Advertisement

Journal of Materials Science

, Volume 49, Issue 15, pp 5246–5255 | Cite as

H-bonding driven assembly of colloidal Au nanoparticles on nanostructured poly(styrene-b-ethylene oxide) block copolymer templates

  • A. Evelyn Di Mauro
  • Vincenzo Villone
  • Chiara Ingrosso
  • Michela Corricelli
  • Lorea Oria
  • Francesc Pérez-Murano
  • Angela Agostiano
  • Marinella Striccoli
  • M. L. Curri
Article

Abstract

A facile, cost-effective, and general solution-based “bottom-up” method for nanopatterning dense arrays of colloidal Au nanoparticles (NPs) has been developed. The organization of the NPs has been successfully achieved onto a microphase-separated poly(styrene-block-ethylene oxide) (PS-b-PEO) block copolymer (BCP) thin film which acts as structural template. The NP assembly process occurs by incubating the BCP films in dispersions of the ex situ synthesized Au NPs, not requiring any chemical pre-treatment or activation step of the copolymer surface, and has demonstrated to be distinctively controlled by multiple, cooperative, and selective hydrogen bonding interactions between hydroxyl functionalities of the capping molecules coating the Au NP surface and the hydrophilic PEO block. The effect of incubation time and concentration of NPs on the selectivity of the assembly has been investigated by atomic force and scanning electron microscopy. The results show that the BCP pattern is preserved after decoration with the Au NPs. The fabricated nanopatterns are good candidates for nanostructure integration in sensing and optoelectronic applications, as well as in memory devices and photonic systems. Moreover, the proposed immobilization protocol represents a model system that can be extended to other NPs having different compositions and surface chemistries.

Keywords

Diblock Copolymer Copolymer Film Phosphonium Chloride Copolymer Template Topography Micrographs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the National Sens&Micro LAB Project (POFESR 2007-2013), by the Italian National Consortium for Material Science and Technology (INSTM), by the FIRB—Futuro in Ricerca (RBFR122HFZ) funding program, by the project MAT2011-15159-E, and by the Prin Project (2013–2016, 20128ZZS2H).

Supplementary material

10853_2014_8184_MOESM1_ESM.pdf (899 kb)
Supplementary material 1 (PDF 898 kb)

References

  1. 1.
    Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239CrossRefGoogle Scholar
  2. 2.
    Fanizza E, Altomare M, Di Mauro AE, Del Sole T, Corricelli M, Depalo N, Comparelli R, Agostiano A, Striccoli M, Curri ML (2012) Polyelectrolyte multilayers as a platform for luminescent nanocrystal patterned assemblies. Langmuir 28:5964–5974CrossRefGoogle Scholar
  3. 3.
    Ingrosso C, Sardella E, Keller S, Dohn S, Striccoli M, Agostiano A, Boisen A, Curri ML (2010) Surface functionalization of epoxy-resist-based microcantilevers with iron oxide nanocrystals. Adv Mater 22:3288–3292CrossRefGoogle Scholar
  4. 4.
    Kim Y, Ingrosso C, Fakhfouri V, Striccoli M, Agostiano A, Curri ML, Brugger J (2009) Inkjet-printed multicolor arrays of highly luminescent nanocrystal-based nanocomposites. Small 5:1051–1057CrossRefGoogle Scholar
  5. 5.
    Pileni MP (2001) Nanocrystal self-assemblies: fabrication and collective properties. J Phys Chem B 105:3358–3371CrossRefGoogle Scholar
  6. 6.
    Yan G, Zhiyong T (2011) Design and application of inorganic nanoparticle superstructures: current status and future challenges. Small 7:2133–2146CrossRefGoogle Scholar
  7. 7.
    Kinge S, Crego-Calama M, Reinhoudt DN (2008) Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 9:20–42CrossRefGoogle Scholar
  8. 8.
    Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458CrossRefGoogle Scholar
  9. 9.
    Innocenzi P, Kidchob T, Falcaro PM (2008) Patterning techniques for mesostructured films. Chem Mater 20:607–614CrossRefGoogle Scholar
  10. 10.
    Kao J, Thorkelsson K, Bai P, Rancatore BJ, Xu T (2013) Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. Chem Soc Rev 42:2654–2678CrossRefGoogle Scholar
  11. 11.
    Haryono A, Binder WY (2006) Controlled arrangement of nanoparticle arrays in block-copolymer domains. Small 2:600–611CrossRefGoogle Scholar
  12. 12.
    Curri ML, Comparelli R, Striccoli M, Agostiano A (2010) Emerging methods for fabricating functional structures by patterning and assembling engineered nanocrystals. PhysChemChemPhys 12:11197–11207Google Scholar
  13. 13.
    Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605CrossRefGoogle Scholar
  14. 14.
    Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985CrossRefGoogle Scholar
  15. 15.
    Pavan MJ, Shenhar R (2011) Two-dimensional nanoparticle organization using block copolymer thin films as templates. J Mater Chem 21:2028–2040CrossRefGoogle Scholar
  16. 16.
    Xu J, Park S, Wang S, Russell TP, Ocko BM, Checco A (2010) Directed self-assembly of block copolymers on two-dimensional chemical patterns fabricated by electro-oxidation nanolithography. Adv Mater 22:2268–2272CrossRefGoogle Scholar
  17. 17.
    Oria L, Ruiz de Luzuriaga A, Alduncin JA, Pérez-Murano F (2013) Polystyrene as a brush layer for directed self-assembly of block co-polymers. Microelectron Eng 110:234–240CrossRefGoogle Scholar
  18. 18.
    Ramanathan M, Kilbey SM, Ji Q, Hill JP, Ariga K (2012) Materials self-assembly and fabrication in confined spaces. J Mater Chem 22:10389–10405CrossRefGoogle Scholar
  19. 19.
    Minelli C, Hinderling C, Heinzelmann H, Pugin R, Liley M (2005) Micrometer-long gold nanowires fabricated using block copolymer templates. Langmuir 21:7080–7082CrossRefGoogle Scholar
  20. 20.
    Thiruvengadathan R, Korampally V, Ghosh A, Chanda N, Gangopadhyay K, Gangopadhyay S (2013) Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep Prog Phys 76:066501CrossRefGoogle Scholar
  21. 21.
    Tercjak A, Gutierrez J, Mondragon G, Mondragon I (2011) Cellulose nanocrystals and au nanoparticles well-dispersed in a poly(styrene-b-ethylene oxide) block copolymer matrix. J Phys Chem C 115:22180–22185CrossRefGoogle Scholar
  22. 22.
    Aissou K, Fleury G, Pecastaings G, Alnasser T, Mornet S, Goglio G, Hadziioannou G (2011) Hexagonal-to-cubic phase transformation in composite thin films induced by FePt nanoparticles located at PS/PEO interfaces. Langmuir 27:14481–14488CrossRefGoogle Scholar
  23. 23.
    Ploshnik E, Langner KM, Halevi A, Ben-Lulu M, Axel HE, Müller AHE, Fraaije JGEM, Sevink GJA, Shenhar R (2013) Hierarchical structuring in block copolymer nanocomposites through two phase-separation processes operating on different time scales. Adv Funct Mater 23:4215–4226CrossRefGoogle Scholar
  24. 24.
    Di Mauro AE, Striccoli M, Depalo N, Fanizza E, Cano L, Ingrosso C, Agostiano A, Curri ML, Tercjak A (2013) Selective confinement of oleylamine capped Au nanoparticles in self-assembled PS-b-PEO diblock copolymer templates. Soft Matter. doi: 10.1039/C3SM52596A Google Scholar
  25. 25.
    Etxeberria H, Fernandez R, Zalakain I, Mondragon I, Eceiza A, Kortaberria G (2014) Effect of CdSe nanoparticle addition on nanostructuring of PS-b-P4VP copolymer via solvent vapor exposure. J Colloid Interface Sci 416:25–29CrossRefGoogle Scholar
  26. 26.
    Darling SB, Yufa NA, Cisse AL, Bader SD, Sibener SJ (2005) Self-organization of fept nanoparticles on photochemically modified diblock copolymer templates. Adv Mater 17:2446–2450CrossRefGoogle Scholar
  27. 27.
    Niu S, Saraf RF (2007) Selective assembly of nanoparticles on block copolymer by surface modification. Nanotechnology 18:125607CrossRefGoogle Scholar
  28. 28.
    Lee W, Lee SY, Zhang X, Rabin O, Briber RM (2013) Hexagonally ordered nanoparticles templated using a block copolymer film through Coulombic interactions. Nanotechnology 24:045305CrossRefGoogle Scholar
  29. 29.
    Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9:2301–2309CrossRefGoogle Scholar
  30. 30.
    Zheng J, Petty JT, Dickson RM (2003) Luminescence tribochromism and bright emission in gold(I) thiouracilate complexes. J Am Chem Soc 125:7780–7781CrossRefGoogle Scholar
  31. 31.
    Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem Eur J 8:28–35CrossRefGoogle Scholar
  32. 32.
    Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217CrossRefGoogle Scholar
  33. 33.
    Lin Z, Kim DH, Wu X, Boosahda L, Stone D, LaRose L, Russel TP (2002) A rapid route to arrays of nanostructures in thin films. Adv Mater 14:1373–1376CrossRefGoogle Scholar
  34. 34.
    Tercjak A, Gutierrez J, Mondragon I (2011) Conductive properties of photoluminescent Au/Ps-b-PEO inorganic/organic hybrids containing nematic liquid crystals. J Phys Chem C 115:1643–1648CrossRefGoogle Scholar
  35. 35.
    Neto C, James M, Telford AM (2009) On the composition of the top layer of microphase separated thin PS-PEO films. Macromolecules 42:4801–4808CrossRefGoogle Scholar
  36. 36.
    Huang L, Yuan H, Zhang D, Zhang Z, Guo J, Ma J (2004) Controlled microphase separated morphology of block polymer thin film and an approach to prepare inorganic nanoparticles. Appl Surf Sci 225:39–46CrossRefGoogle Scholar
  37. 37.
    Ghoshal T, Shaw MT, Bolger CT, Holmes JD, Morris MA (2012) A general method for controlled nanopatterning of oxide dots: a microphase separated block copolymer platform. J Mater Chem 22:12083–12089CrossRefGoogle Scholar
  38. 38.
    He WN, Xu JT (2012) Crystallization assisted self-assembly of semicrystalline block copolymers. Prog Pol Sci 37:1350–1400CrossRefGoogle Scholar
  39. 39.
    Tran-Ba KH, Finley JJ, Higgins DA, Ito T (2012) Single-molecule tracking studies of millimeter-scale cylindrical domain alignment in polystyrene–poly(ethylene oxide) diblock copolymer films induced by solvent vapor penetration. J Phys Chem Lett 3:1968–1973CrossRefGoogle Scholar
  40. 40.
    Lee JW, Lee C, Choi SY, Kim SH (2010) Block copolymer–surfactant complexes in thin films for multiple usages from hierarchical structure to nano-objects. Macromolecules 43:442–447CrossRefGoogle Scholar
  41. 41.
    Mendoza C, Pietsch T, Gutmann JS, Jehnichen D, Gindy N, Fahmi A (2009) Block copolymers with gold nanoparticles: correlation between structural characteristics and mechanical properties. Macromolecules 42:1203–1211CrossRefGoogle Scholar
  42. 42.
    Mendoza C, Gindy N, Gutmann JS, Fromsdorf A, Forster S, Fahmi A (2009) In situ synthesis and alignment of au nanoparticles within hexagonally packed cylindrical domains of diblock copolymers in bulk. Langmuir 25:9571–9578CrossRefGoogle Scholar
  43. 43.
    Hunter CH, Ihekwaba N, Misuraca MC, Segarra-Maset MD, Turega SM (2009) Cooperativity in multiply H-bonded complexes. Chem Comm 26:3964–3966CrossRefGoogle Scholar
  44. 44.
    Schmidt AR, Nguyen NDT, Leopold MC (2013) Nanoparticle film assemblies as platforms for electrochemical biosensing—factors affecting the amperometric signal enhancement of hydrogen peroxide. Langmuir 29:4574–4583CrossRefGoogle Scholar
  45. 45.
    Maldonado S, Knapp D, Lewis NS (2008) Near-ideal photodiodes from sintered gold nanoparticle films on methyl-terminated Si(111) surfaces. J Am Chem Soc 130:3300–3301CrossRefGoogle Scholar
  46. 46.
    Ko Y, Baek H, Kim Y, Yoon M, Cho J (2013) Hydrophobic nanoparticle-based nanocomposite films using in situ ligand exchange layer-by-layer assembly and their nonvolatile memory applications. ACS Nano 7:143–153CrossRefGoogle Scholar
  47. 47.
    Schmid G, Simon U (2005) Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem Commun 6:697–710CrossRefGoogle Scholar
  48. 48.
    Schmid G, Reuter T, Simon U, Noyong M, Blech K, Santhanam V, Jäger D, Slomka H, Lüth L, Lepsa MI (2008) Generation and electrical contacting of gold quantum dots. Coll Polym Sci 286:1029–1037CrossRefGoogle Scholar
  49. 49.
    Sun Z, Kim DH, Wolkenhauer M, Bumbu GG, Knoll W, Gutmann JS (2006) Synthesis and photoluminescence of titania nanoparticle arrays templated by block-copolymer thin films. ChemPhysChem 7:370–378CrossRefGoogle Scholar
  50. 50.
    Yuan J, Hajebifard A, George C, Berini P, Zou S (2013) Ordered gold nanoparticle arrays on glass and their characterization. J Colloid Interface Sci 410:1–10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Evelyn Di Mauro
    • 1
  • Vincenzo Villone
    • 1
    • 2
  • Chiara Ingrosso
    • 1
  • Michela Corricelli
    • 2
  • Lorea Oria
    • 3
  • Francesc Pérez-Murano
    • 3
  • Angela Agostiano
    • 1
    • 2
  • Marinella Striccoli
    • 1
  • M. L. Curri
    • 1
  1. 1.CNR-IPCF Bari-Division c/o Chemistry DepartmentUniversity “Aldo Moro” of BariBariItaly
  2. 2.Chemistry DepartmentUniversity “Aldo Moro” of BariBariItaly
  3. 3.Microelectronic Institute of Barcelona (IMB-CNM, CSIC)BarcelonaSpain

Personalised recommendations