Journal of Materials Science

, Volume 49, Issue 13, pp 4636–4642 | Cite as

Enhancement of thermoelectric power in layered Bi2Sr2Co2−x Ir x O y single crystals

  • Yanan Huang
  • Bangchuan Zhao
  • Shuai Lin
  • Jie Yang
  • Wenhai Song
  • Ran Ang
  • Yuping Sun


We report on the structural, electrical, and thermal transport properties of the single crystals of Bi2Sr2Co2−x Ir x O y (0 ≤ x ≤ 0.2). Large-sized (centimeter-level) and good-quality single crystals were grown by a modified flux method. The substitution of Ir ions for Co ones makes the in-plane resistivity ρ ab increase monotonically, whereas, the in-plane thermopower S ab initially increases and then decreases as x is larger than 0.1. Therefore, among all samples, the in-plane power factor P ab (=S ab 2 /ρ ab) of Bi2Sr2Co1.9Ir0.1O y would reach a maximum value of 116.4 μWm−1K−2 at 300 K and shows a significant improvement of about 20 % compared to that of the parent sample. Our results indicate that an appropriate doping of Ir ions at Co-sites may provide an effective way to enhance the thermoelectric performance of Bi2Sr2Co2O y system.


Electrical Transport Property Thermal Transport Property Spin State Transition CoO2 Layer Layered Cobaltite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Key Basic Research under Contract No. 2011CBA00111, and the National Nature Science Foundation of China under Contract No. 11174293, U1232140, 11174288, and 10904151, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars.


  1. 1.
    Xu J, Wei CP, Jia K (2010) Thermoelectric performance of textured Ca3−xYbxCo4O9−δ ceramics. J Alloys Compd 500:227–230CrossRefGoogle Scholar
  2. 2.
    Pinitsoontorn S, Lerssongkram N, Harnwunggmoung A, Kurosaki K, Yamanaka S (2010) Synthesis, mechanical and magnetic properties of transition metals-doped Ca3Co3.8M0.2O9. J Alloys Compd 503:431–435CrossRefGoogle Scholar
  3. 3.
    Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 56:R12685–R12687CrossRefGoogle Scholar
  4. 4.
    Masset AC, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, Raveau B, Hejtmanek J (2000) Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev B 62:166–175CrossRefGoogle Scholar
  5. 5.
    Funahashi R, Shikano M (2002) Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit. Appl Phys Lett 81:1459–1461CrossRefGoogle Scholar
  6. 6.
    Hébert S, Lambert S, Pelloquin D, Maignan A (2001) Large thermopower in a metallic cobaltite: the layered Tl–Sr–Co–O misfit. Phys Rev B 64:172101-1–172101-4CrossRefGoogle Scholar
  7. 7.
    Wang Y, Sui Y, Ren P, Wang L, Wang XJ, Su WH, Fan HJ (2010) Strongly correlated properties and enhanced thermoelectric response in Ca3CO4−xMxO9 (M = Fe, Mn, and Cu). Chem Mater 22:1155–1163CrossRefGoogle Scholar
  8. 8.
    Yin LH, Ang R, Huang YN, Jiang HB, Zhao BC, Zhu XB, Song WH, Sun YP (2012) The contribution of narrow band and modulation of thermoelectric performance in doped layered cobaltites Bi2Sr2Co2Oy. Appl Phys Lett 100:173503-1–173503-4Google Scholar
  9. 9.
    Yin LH, Ang R, Huang ZH, Liu Y, Tan SG, Huang YN, Zhao BC, Song WH, Sun YP (2013) Exotic reinforcement of thermoelectric power driven by Ca doping in layered Bi2Sr2−xCaxCo2Oy. Appl Phys Lett 102:141907-1–141907-5Google Scholar
  10. 10.
    Hao HS, Yu HP, Zhao LM (2011) Thermoelectric characteristics of Pb- and La-doped Bi2Ba2Co2Oy ceramics. Adv Mater Res 228–229:804–808CrossRefGoogle Scholar
  11. 11.
    Hsu HC, Lee WL, Wu KK, Kuo YK, Chen BH, Chou FC (2012) Enhanced thermoelectric figure-of-merit ZT for hole-doped Bi2Sr2Co2Oy through Pb substitution. J Appl Phys 111:103709-1–103709-5Google Scholar
  12. 12.
    Hao HS, Yang HZ, Liu YT, Hu X (2011) High-temperature Thermoelectric Properties of Cu-substituted Bi2Ba2Co2−xCuxOy Oxides. J Mater Sci Technol 27:525–528CrossRefGoogle Scholar
  13. 13.
    Huang YN, Zhao BC, Ang R, Lin S, Huang ZH, Tan SG, Liu Y, Song WH, Sun YP (2013) Enhanced thermoelectric performance and room-temperature spin-state transition of Co4+ Ions in the Ca3Co4−xRhxO9 system. J Phys Chem C 117:11459–11470CrossRefGoogle Scholar
  14. 14.
    Qi Y, Wang L, Gao Z, Wang D, Zhang X, Wang C, Yao C, Ma Y (2011) Superconductivity induced by doping Rh in CaFe2−xRhxAs2. New J Phys 13:033020-1–033020-9CrossRefGoogle Scholar
  15. 15.
    Shibasaki S, Kobayashi W, Terasaki I (2006) Transport properties of the delafossite Rh oxide Cu1−xAgxRh1−yMgyO2: Effect of Mg substitution on the resistivity and Hall coefficient. Phys Rev B 74:235110-1–235110-6CrossRefGoogle Scholar
  16. 16.
    Huang YN, Zhao BC, Lin S, Song WH, Sun YP (2013) Renormalized bands and low-temperature colossal thermopower induced by Ir doping in Ca3Co4O9 system. J Appl Phys 114:093709-1–093709-5Google Scholar
  17. 17.
    Mikami M, Ohtsuka S, Yoshimura M, Mori Y, Sasaki T, Funahashi R, Shikano M (2003) Effects of KCl addition on the K2CO3 flux growth of Ca3Co4O9 crystals for a thermoelectric device. Jpn J Appl Phys 42:3549–3551CrossRefGoogle Scholar
  18. 18.
    Huang YN, Zhao BC, Hu XB, Lin S, Ang R, Song WH, Sun YP (2012) Enhanced electronic correlation and thermoelectric response by Cu-doping in Ca3Co4O9 single crystals. Dalton Trans 41:11176–11186CrossRefGoogle Scholar
  19. 19.
    Zhao BC, Sun YP, Lu WJ, Zhu XB, Song WH (2006) Enhanced spin fluctuations in Ca3Co4−xTixO9 single crystals. Phys Rev B 74:144417-1–144417-8Google Scholar
  20. 20.
    Yamamoto T, Tsukada I, Uchinokura K, Takagi M, Tsubone T, Ichihara M, Kobayashi K (2000) Structural phase transition and metallic behavior in misfit layered (Bi, Pb)–Sr–Co–O system. Jpn J Appl Phys 39:L747–L750CrossRefGoogle Scholar
  21. 21.
    Sugiyama J, Xia C, Tani T (2003) Anisotropic magnetic properties of Ca3Co4O9: evidence for a spin-density-wave transition at 27 K. Phys Rev B 67:104410-1–104410-5Google Scholar
  22. 22.
    Yin LH, Ang R, Zhao BC, Huang YN, Liu Y, Tan SG, Song WH, Sun YP (2013) Evolution of the thermoelectric performance in low Ca-doped layered cobaltite Bi2Sr2Co2Oy. Solid State Commun 158:16–19CrossRefGoogle Scholar
  23. 23.
    Georges A, Kotliar G, Krauth W, Rozenberg MJ (1996) Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev Mod Phys 68:13–125CrossRefGoogle Scholar
  24. 24.
    Koshibae W, Tsutsui K, Maekawa S (2000) Thermopower in cobalt oxides. Phys Rev B 62:6869–6872CrossRefGoogle Scholar
  25. 25.
    Terasaki I, Shibasaki S, Yoshida S, Kobayashi W (2010) Spin state control of the perovskite Rh/Co oxides. Materials 3:786–799CrossRefGoogle Scholar
  26. 26.
    Wu H (2012) Metal-insulator transition in Sr2−xLaxCoO4 driven by spin-state transition. Phys Rev B 86:075120-1–075120-4Google Scholar
  27. 27.
    Limelette P, Hardy V, Auban-Senzier P, Jerome D, Flahaut D, Hebert S, Fresard R, Simon C, Noudem J, Maignan A (2005) Strongly correlated properties of the thermoelectric cobalt oxide Ca3Co4O9. Phys Rev B 71:233108-1–233108-4CrossRefGoogle Scholar
  28. 28.
    Xu GJ, Funahashi R, Shikano M, Matsubara I, Zhou YQ (2002) Thermoelectric properties of the Bi- and Na-substituted Ca3Co4O9 system. Appl Phys Lett 80:3760–3762CrossRefGoogle Scholar
  29. 29.
    Huang YN, Zhao BC, Fang J, Ang R, Sun YP (2011) Tunning of microstructure and thermoelectric properties of Ca3Co4O9 ceramics by high-magnetic-field sintering. J Appl Phys 110:123713-1–123713-12Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Key Laboratory of Materials Physics, Institute of Solid State PhysicsChinese Academy of SciencesHefeiPeople’s Republic of China
  2. 2.High Magnetic Field LaboratoryChinese Academy of SciencesHefeiPeople’s Republic of China
  3. 3.University of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations