Skip to main content

Advertisement

Log in

Facile fabrication of anatase TiO2 nanotube arrays having high photocatalytic and photovoltaic performances by anodization of titanium in mixed viscous solvents

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly ordered, vertically aligned, one side-opened, and regularly porous anatase TiO2 nanotube arrays (TNAs) have been facilely grown by anodizing Ti foil in mixed viscous solvents of ethylene glycol (EG) and glycerol. By changing the volume ratio of two solvents, we have controlled the structural properties of TNAs such as tube diameters, wall thicknesses, and tube lengths. Our prepared TNAs have been found to have enhanced (004) planes, which are reactive in catalysis reactions. We have demonstrated that TNAs grown in 2:1 (v/v) EG and glycerol have the lowest band-gap energy and the largest mean crystallite diameter. TNAs grown on Ti foil have been directly employed for photocatalytic materials and the working electrode of photovoltaic dye-sensitized solar cells. Among our prepared samples, TNAs grown in 2:1 (v/v) EG and glycerol have shown the best photocatalytic activity for the degradation of methylene blue and the highest photovoltaic conversion efficiency of 4.08 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kwak JA, Lee DK, Jang DJ (2013) Facile fabrication of platinum nanobubbles having efficient catalytic degradation performances. Appl Catal B 142–143:323–328

    Article  Google Scholar 

  2. Son M, Kim SJ, Kim JY, Jang DJ (2013) Laser-induced silver nanojoining of gold nanoparticles. J Nanosci Nanotechnol 13:5777–5782

    Article  Google Scholar 

  3. Skrabalak SE, Au L, Li X, Xia Y (2007) Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 9:2182–2190

    Article  Google Scholar 

  4. Kim MR, Kim JY, Kim SJ, Jang DJ (2011) Laser-induced fabrication of platinum nanoshells having enhanced catalytic and Raman properties. Appl Catal A 393:317–322

    Article  Google Scholar 

  5. Zhang YY, Kim JY, Kim Y, Jang DJ (2012) Controlled optical properties of water-soluble CdTe/CdS/ZnS quantum dots. J Nanopart Res 14:1117–1125

    Article  Google Scholar 

  6. Fujisjima A, Zhang XT, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  Google Scholar 

  7. Kim JY, Jeong H, Jang DJ (2011) Hydrothermal fabrication of well-ordered ZnO nanowire arrays on Zn foil: room temperature ultraviolet nanolasers. J Nanopart Res 13:6699–6706

    Article  Google Scholar 

  8. Kim HB, Jang DJ (2012) Precursor-dependent shape variation of wurtzite CdSe crystals in a microwave-assisted polyol process. CrystEngComm 14:6946–6951

    Article  Google Scholar 

  9. Kim Y, Kim JY, Jang DJ (2012) One-pot and template-free fabrication of ZnS·[ethylenediamine]05 hybrid nanobelts. J Phys Chem C 116:10296–10302

    Article  Google Scholar 

  10. Kim EY, Park JH, Han GY (2008) Design of TiO2 nanotube array-based water-splitting reactor for hydrogen generation. J Power Sources 184:284–287

    Article  Google Scholar 

  11. Joo S, Muto I, Hara N (2010) Hydrogen gas sensor using Pt- and Pd-added anodic TiO2 nanotube films. J Electrochem Soc 157:J221–J226

    Article  Google Scholar 

  12. Rawal SB, Bera S, Lee D, Jang DJ, Lee WI (2013) Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency. Catal Sci Technol 3:1822–1830

    Article  Google Scholar 

  13. Xu C, Shin PH, Cao L, Wu J, Gao D (2010) Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells. Chem Mater 22:143–148

    Article  Google Scholar 

  14. Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2010) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 10:750

    Article  Google Scholar 

  15. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  16. Kuwahara Y, Yamashita H (2011) Efficient photocatalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials. J Mater Chem 21:2407–2416

    Article  Google Scholar 

  17. Bosc F, Ayral A, Albouy PA, Guizard C (2003) A simple route for low-temperature synthesis of mesoporous and nanocrystalline anatase thin films. Chem Mater 15:2463–2468

    Article  Google Scholar 

  18. Liao J, Lin S, Zhang L, Pan N, Cao X, Li J (2012) Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. ACS Appl Mater Interfaces 4:171–177

    Article  Google Scholar 

  19. Zhou W, Sun F, Pan K, Tian G, Jiang B, Ren Z, Tian C, Fu H (2011) Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation characterization and photocatalytic performance. Adv Funct Mater 21:1922–1930

    Article  Google Scholar 

  20. Allam NK, Shankar K, Grimes CA (2008) A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing. Adv Mater 20:3942–3946

    Article  Google Scholar 

  21. Kim JY, Lee D, Kim HJ, Lim I, Lee WI, Jang DJ (2013) Annealing-free preparation of anatase TiO2 nanopopcorns on Ti foil via a hydrothermal process and their photocatalytic and photovoltaic applications. J Mater Chem A 1:5982–5988

    Article  Google Scholar 

  22. Periyat P, Leyland N, McCormack DE, Colreavy J, Corr D, Pillai SC (2010) Rapid microwave synthesis of mesoporous TiO2 for electrochromic displays. J Mater Chem 20:3650–3655

    Article  Google Scholar 

  23. Hou J, Yang X, Lv X, Huang M, Wang Q, Wang J (2012) Controlled synthesis of TiO2 mesoporous microspheres via chemical vapor deposition. J Alloys Compd 511:202–208

    Article  Google Scholar 

  24. Zwilling V, Aucouturier M, Darque-Ceretti E (1999) Anodic oxidation of titanium and TA6V alloy in chromic media an electrochemical approach. Electrochim Acta 45:921–929

    Article  Google Scholar 

  25. Li LL, Tsai CY, Wu HP, Chen CC, Diau EWG (2010) Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells. J Mater Chem 20:2753–2758

    Article  Google Scholar 

  26. Wang J, Lin Z (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257–1261

    Article  Google Scholar 

  27. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P (2005) Smooth anodic TiO2 nanotubes. Angew Chem Int Ed 44:7463–7465

    Article  Google Scholar 

  28. Allam NK, Grimes CA (2009) Room temperature one-step polyol synthesis of anatase TiO2 nanotube arrays: photoelectrochemical properties. Langmuir 25:7234–7240

    Article  Google Scholar 

  29. Zhang J, Tang X, Li D (2011) One-step formation of crystalline TiO2 nanotubular arrays with intrinsic p-n junctions. J Phys Chem C 115:21529–21534

    Article  Google Scholar 

  30. Yoriya S, Mor GK, Sharma S, Grimes CA (2008) Synthesis of ordered arrays of discrete partially crystalline titania nanotubes by ti anodization using diethylene glycol electrolytes. J Mater Chem 18:3332–3336

    Article  Google Scholar 

  31. Mohammadpour A, Waghmare PR, Mitra SK, Shankar K (2010) Anodic growth of large-diameter multipodal TiO2 nanotubes. ACS Nano 4:7421–7430

    Article  Google Scholar 

  32. Su Z, Zhou W (2011) Formation morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 21:8955–8970

    Article  Google Scholar 

  33. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  Google Scholar 

  34. Yang M, Jha H, Liu N, Schmuki P (2011) Increased photocurrent response in Nb-doped TiO2 nanotubes. J Mater Chem 21:15205–15208

    Article  Google Scholar 

  35. Ali G, Yoo SH, Kum JM, Kim YN, Cho SO (2011) A novel route to large-scale and robust free-standing TiO2 nanotube membranes based on N2 gas blowing combined with methanol wetting. Nanotechnology 22:245602

    Article  Google Scholar 

  36. Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18:065707

    Article  Google Scholar 

  37. Kang SH, Choi SH, Kang MS, Kim JY, Kim HS, Hyeon T, Sung YE (2008) Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Adv Mater 20:54–58

    Article  Google Scholar 

  38. Ahn KS, Kang MS, Lee JW, Kang YS (2007) Effects of a surfactant-templated nanoporous TiO2 interlayer on dye-sensitized solar cells. J Appl Phys 101:084312

    Article  Google Scholar 

  39. Macak JM, Tsuchiya H, Schmuki P (2005) High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed 44:2100–2102

    Article  Google Scholar 

  40. Liu M, Piao LY, Zhao L, Ju ST, Yan ZJ, He T, Zhou CL, Li HL, Wang WJ (2010) Anatase TiO2 single crystals with exposed 001 and 110 facets: facile synthesis and enhanced photocatalysis. Chem Commun 46:1664–1666

    Article  Google Scholar 

  41. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  Google Scholar 

  42. Dai Y, Cobley CM, Zeng J, Sun Y, Xia Y (2009) Synthesis of anatase TiO2 nanocrystals with exposed 001 facets. Nano Lett 9:2455–2459

    Article  Google Scholar 

  43. de Tacconi NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa RS, Basit NA, Rajeshwar K (2006) Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. J Phys Chem B 110:25347–25355

    Article  Google Scholar 

  44. Kim JY, Kim MR, Park SY, Jang DJ (2010) Hydrothermal growth control of ZnSe·N2H4 nanobelts. CrystEngComm 12:1803–1808

    Article  Google Scholar 

  45. Bandaranayake RJ, Wen GW, Lin LY, Jiang HX, Sorensen CM (1995) Structural phase behavior in II–VI semiconductor nanoparticles. Appl Phys Lett 67:831–833

    Article  Google Scholar 

  46. Callister WD Jr (2003) Materials science and engineering: an introduction, 6th edn. Wiley, New York, pp 77–80

    Google Scholar 

  47. Li L, Yang YW, Li GH, Zhang LD (2006) Conversion of a Bi nanowire array to an array of Bi–Bi2O3 core–shell nanowires and Bi2O3 nanotubes. Small 2:548–553

    Article  Google Scholar 

  48. Ferrari AM, Szieberth D, Noel Y (2011) DFT modeling of anatase nanotubes. J Mater Chem 21:4568–4580

    Article  Google Scholar 

  49. Trindade T, O`Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis properties and perspectives. Chem Mater 13:3843–3858

    Article  Google Scholar 

  50. Weller H (1993) Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew Chem Int Ed 32:41–53

    Article  Google Scholar 

  51. Brus LE (1984) Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  Google Scholar 

  52. Reddy KM, Manorama SV, Reddy AR (2003) Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78:239–245

    Article  Google Scholar 

  53. Lei Y, Zhang LD, Meng GW, Li GH, Zhang XY, Liang CH, Chen W, Wang SX (2001) Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl Phys Lett 78:1125–1127

    Article  Google Scholar 

  54. Kim J, Choi W, Park H (2010) Effects of TiO2 surface fluorination on photocatalytic degradation of methylene blue and humic acid. Res Chem Intermed 36:127–140

    Article  Google Scholar 

  55. Nguyen-Phan TD, Shin EW (2011) Morphological effect of TiO2 catalysts on photocatalytic degradation of methylene blue. J Ind Eng Chem 17:397–400

    Article  Google Scholar 

  56. Xiao FX (2012) Self-assembly preparation of gold nanoparticles-TiO2 nanotube arrays binary hybrid nanocomposites for photocatalytic applications. J Mater Chem 22:7819–7830

    Article  Google Scholar 

  57. Wilhelm P, Stephan D (2007) Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. J Photochem Photobiol A 185:19–25

    Article  Google Scholar 

  58. Liang H, Li X (2009) Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. J Hazard Mater 162:1415–1422

    Article  Google Scholar 

  59. Zhang ZH, Wang P (2012) Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ Sci 5:6506–6512

    Article  Google Scholar 

  60. Zhao D, Peng T, Lu L, Cai P, Jiang P, Bian Z (2008) Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles. J Phys Chem C 112:8486–8494

    Article  Google Scholar 

  61. Liao JY, Lei BX, Chen HY, Kuang DB, Su CY (2012) Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy Environ Sci 5:5750–5757

    Article  Google Scholar 

  62. Park NG, van de Lagemaat J, Frank AJ (2000) Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J Phys Chem B 104:8989–8994

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP) (Nos. 2011-0028981 and 2012-006345). D.J.J. is also thankful to the SRC Program of NRF (2007-0056095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du-Jeon Jang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 383 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D., Kim, HB., Yu, S. et al. Facile fabrication of anatase TiO2 nanotube arrays having high photocatalytic and photovoltaic performances by anodization of titanium in mixed viscous solvents. J Mater Sci 49, 3414–3422 (2014). https://doi.org/10.1007/s10853-014-8051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8051-4

Keywords

Navigation