Journal of Materials Science

, Volume 49, Issue 7, pp 2844–2852 | Cite as

Kinetics of light-assisted physical ageing in chalcogenide glasses



A fundamental understanding of glass relaxation under ambient temperatures, as well as under the external influences is vital to the glass and polymer science communities. Our results show that kinetics of light-assisted physical aging in Se-based glasses can be well fitted with stretch-exponential Kohlrausch type function, which exponent β and the effective time relaxation constant τ depend on the wavelength of incident photons. The obtained β values for Se-rich glasses group around 3/7 and 1/3 values, predicted by Phillips field-free and field-forced axiomatic diffusion-to-traps models.


Differential Scanning Calorimetry Differential Scanning Calorimetry Curve Structural Relaxation Differential Scanning Calorimetry Measurement Physical Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Struik LCE (1978) Physical ageing in amorphous polymers and other materials. Eslevier, New YorkGoogle Scholar
  2. 2.
    Hutchinson JM (1995) Physical ageing of polymers. Prog Polym Sci 20:703CrossRefGoogle Scholar
  3. 3.
    Chen K, Schweizer KS (2007) Molecular theory of physical aging in polymer glasses. Phys Rev Lett 98:167802CrossRefGoogle Scholar
  4. 4.
    Nemilov SV (2000) Physical ageing of silicate glasses at room temperature: general regularities as a basis for the theory and the possibility of a priori calculation of the ageing rate. Glass Phys Chem 26:511CrossRefGoogle Scholar
  5. 5.
    Nemilov SV (2001) Physical ageing of silicate glasses at room temperature: the choice of quantitative characteristics of the process and the ranking of glasses by their tendency to ageing. Glass Phys Chem 27:214CrossRefGoogle Scholar
  6. 6.
    Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glassforming liquids and amorphous solids. J Appl Phys 88:3113CrossRefGoogle Scholar
  7. 7.
    Ngai KL (2011) Relaxation and diffusion in complex systems. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Hodge IM (1995) Physical ageing in polymer glasses. Science 267:1945CrossRefGoogle Scholar
  9. 9.
    Shpotyuk O, Golovchak R, Kozdras A (2013) Physical aging of chalcogenide glasses. In: Adam J-L, Zhang X (eds) Preparation and properties of chalcogenide glasses. Woodhead, CambridgeGoogle Scholar
  10. 10.
    Golovchak R, Jain H, Shpotyuk O, Kozdras A, Saiter A, Saiter J-M (2008) Experimental verification of the reversibility window concept in binary As–Se glasses subjected to a long-term physical aging. Phys Rev B 78:014202CrossRefGoogle Scholar
  11. 11.
    Chen P, Boolchand P, Georgiev DG (2010) Long term aging of selenide glasses: evidence of sub-T g endotherms and pre-T g exotherms. J Phys 22:065104Google Scholar
  12. 12.
    Golovchak R, Kozdras A, Balitska V, Shpotyuk O (2012) Step-wise kinetics of natural physical ageing in arsenic selenide glasses. J Phys 24:505106Google Scholar
  13. 13.
    Saiter JM, Arnoult M, Grenet J (2005) Very long physical ageing in inorganic polymers exemplied by the GexSe1−x vitreous system. Phys B 355:370CrossRefGoogle Scholar
  14. 14.
    Gupta PK, Mauro JC (2009) Composition dependence of glass transition temperature and fragility. I. A topological model incorporating temperature-dependent constraints. J Chem Phys 130:094503CrossRefGoogle Scholar
  15. 15.
    Golovchak R, Kozdras A, Cz Gorecki, Shpotyuk O (2006) Gamma-irradiation-induced physical ageing in As–Se glasses. J Non-Cryst Solids 352:4960CrossRefGoogle Scholar
  16. 16.
    Golovchak R, Kozdras A, Kozyukhin S, Shpotyuk O (2009) High-energy & #x03B3;-irradiation effect on physical ageing in Ge–Se glasses. Nucl Instr Methods Phys Res B 267:2958CrossRefGoogle Scholar
  17. 17.
    Lucas P, King EA, Horner AD, Johnson BR, Sundaram SK (2006) Photostructural relaxation in As–Se–S glasses: effect of network fragility. J Non-Cryst Solids 352:2067CrossRefGoogle Scholar
  18. 18.
    Lucas P, King EA, Doraiswamy A, Jivaganont P (2005) Competitive photostructural effects in Ge–Se glass. Phys Rev B 71:104207CrossRefGoogle Scholar
  19. 19.
    Calvez L, Yang Zh, Lucas P (2008) Light-induced matrix softening of Ge–As–Se network glasses. Phys Rev Lett 101:177402CrossRefGoogle Scholar
  20. 20.
    Kozdras A, Golovchak R, Shpotyuk O, Szymura S, Saiter A, Saiter J-M (2011) Light-assisted physical ageing in chalcogenide glasses: dependence on the wavelength of incident photons. J Mater Res 26:2420CrossRefGoogle Scholar
  21. 21.
    Golovchak R, Kozdras A, Shpotyuk O, Kozyukhin S, Saiter J-M (2009) Long-term ageing behaviour in Ge–Se glasses. J Mater Sci 44:3962. doi: 10.1007/s10853-009-3540-6 CrossRefGoogle Scholar
  22. 22.
    Arun P, Vedeshwar AG (1997) Temperature rise at laser-irradiated spot in a low thermal conducting film. Phys B 229:409–415CrossRefGoogle Scholar
  23. 23.
    Buisson M, Gueguen Y, Laniel R, Cantoni Ch, Houizot P, Bureau B, Sangleboeuf J-C, Lucas P (2013) Mechanical model of giant photoexpansion and the role of photofluidity. Phys Status Solid B 246(8):1773–1785Google Scholar
  24. 24.
    Yannopoulos SN, Trunov ML (2009) Photoplastic effects in chalcogenide glasses: a review. Phys Status Solid B 246:1773CrossRefGoogle Scholar
  25. 25.
    Gueguen Y, Sangleboeuf J-Ch, Keryvin V, Lepine E, Yang Zh, Rouxel T, Point C, Bureau B, Zhang X-H, Lucas P (2010) High temperature elasticity and viscosity of GexSe1−x glasses in the glass transition range. Phys Rev B 82:1–134114CrossRefGoogle Scholar
  26. 26.
    Phillips JC (1996) Stretched exponential relaxation in molecular and electronic glasses Rep. Prog Phys 59:1133–1207CrossRefGoogle Scholar
  27. 27.
    Macdonald JR, Phillips JC (2005) Topological derivation of shape exponents for stretched exponential relaxation. J Chem Phys 122:074510CrossRefGoogle Scholar
  28. 28.
    Bohmer R, Angell CA (1992) Correlations of nonexponentiality and state dependence of relaxations with bond connectivity in Ge–As–Se supercooled liquids. Phys Rev B 45:10091CrossRefGoogle Scholar
  29. 29.
    Welch RC, Smith JR, Potuzak M, Guo X, Bowden BF, Kiczenski TJ, Allan DC, King EA, Ellison AJ, Mauro JC (2013) Dynamics of glass relaxation at room temperature. Phys Rev Lett 110:265901CrossRefGoogle Scholar
  30. 30.
    Naumis GG, Phillips JC (2012) Bifurcation of stretched exponential relaxation in microscopically homogeneous glasses. J Non-Cryst Solids 358:893–897CrossRefGoogle Scholar
  31. 31.
    Golovchak R, Ingram A, Kozdras A, Vlcek M, Roiland C, Bureau B, Shpotyuk O (2012) Initial stage of physical ageing in network glasses. Phil Mag 92:4182CrossRefGoogle Scholar
  32. 32.
    Golovchak R, Ingram A, Kozyukhin S, Shpotyuk O (2013) Free volume fragmentation in glassy chalcogenides during natural physical ageing as probed by PAL spectroscopy. J Non-Cryst Solids 377:49CrossRefGoogle Scholar
  33. 33.
    Nemilov SV, Johari GP (2003) A mechanism for spontaneous relaxation of glass at room temperature. Phil Mag 83:3117CrossRefGoogle Scholar
  34. 34.
    Jund Ph, Jullien R, Campbell I (2001) Random walks on fractals and stretched exponential relaxation. Phys Rev E 63:036131CrossRefGoogle Scholar
  35. 35.
    Di Leonardo R, Gentilini S, Ianni F, Ruocco G (2006) Aging and flow in a complex fluid. J Non-Cryst Solids 352:4928CrossRefGoogle Scholar
  36. 36.
    Golovchak R, Kovalskiy A, Miller AC, Jain H, Shpotyuk O (2007) Structure of Se-rich As–Se glasses by high-resolution X-ray photoelectron spectroscopy. Phys Rev B76:1–125208Google Scholar
  37. 37.
    Feltz A (1993) Amorphous inorganic materials and glasses. VCH, WeinheimGoogle Scholar
  38. 38.
    Mott NF, Davis EA (1971) Electronic processes in non-crystalline materials. Clarendon Press, OxfordGoogle Scholar
  39. 39.
    Shieh SHM, LaCourse WC (1993) Ageing and sub-T g relaxation in arsenic selenide glass fibers. Mater Chem Phys 35:160CrossRefGoogle Scholar
  40. 40.
    McEnroe DJ, LaCourse WC (1989) Tensile strengths of Se, As2S3, As2Se3, and Ge30As15Se55 glass fibers. J Am Ceram Soc 72:1491CrossRefGoogle Scholar
  41. 41.
    Greaves GN, Sen S (2007) Inorganic glasses, glass-forming liquids and amorphizing solids. Adv Phys 56:1–166CrossRefGoogle Scholar
  42. 42.
    Golovchak R, Shpotyuk O, Kozyukhin S, Kovalskiy A, Miller AC, Jain H (2009) Structural paradigm of Se-rich Ge–Se glasses by high-resolution X-ray photoelectron spectroscopy. J Appl Phys 105:103704CrossRefGoogle Scholar
  43. 43.
    Tanaka K (1986) Configurational and structural models for photodarkening in glassy chalcogenides, Japanese. J Appl Phys 25:779CrossRefGoogle Scholar
  44. 44.
    Nagels P, Tichy L, Mertens R, Callaerts R (2000) Low-temperature photodarkening of the AsxSe100−x system prepared by PECVD. Mater Lett 46:234CrossRefGoogle Scholar
  45. 45.
    Oheda H (1979) The exponential absorption edge in amorphous Ge–Se compounds. Jap J Appl Phys 18:1973CrossRefGoogle Scholar
  46. 46.
    Kastner M, Adler D, Fritzsche H (1976) Valence-alternation model for localized gap states in lone-pair semiconductors. Phys Rev Lett 37:1504–1507CrossRefGoogle Scholar
  47. 47.
    Tanaka K (2004) Midgap photon effects in As2S3 glass. Phil Mag Lett 84:601CrossRefGoogle Scholar
  48. 48.
    Ho N, Laniel JM, Vallee R, Villeneuve A (2003) Photosensitivity of As2S3 chalcogenide thin films at 1.5 μm. Opt Lett 28:965CrossRefGoogle Scholar
  49. 49.
    Borisova ZU (1981) Glassy semiconductors. Plenum Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physics and AstronomyAustin Peay State UniversityClarksvilleUSA
  2. 2.Faculty of Physics of Opole University of TechnologyOpolePoland
  3. 3.Institute of Physics of Jan Dlugosz UniversityCzestochowaPoland

Personalised recommendations