Skip to main content
Log in

Kinetics of light-assisted physical ageing in chalcogenide glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A fundamental understanding of glass relaxation under ambient temperatures, as well as under the external influences is vital to the glass and polymer science communities. Our results show that kinetics of light-assisted physical aging in Se-based glasses can be well fitted with stretch-exponential Kohlrausch type function, which exponent β and the effective time relaxation constant τ depend on the wavelength of incident photons. The obtained β values for Se-rich glasses group around 3/7 and 1/3 values, predicted by Phillips field-free and field-forced axiomatic diffusion-to-traps models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Struik LCE (1978) Physical ageing in amorphous polymers and other materials. Eslevier, New York

    Google Scholar 

  2. Hutchinson JM (1995) Physical ageing of polymers. Prog Polym Sci 20:703

    Article  Google Scholar 

  3. Chen K, Schweizer KS (2007) Molecular theory of physical aging in polymer glasses. Phys Rev Lett 98:167802

    Article  Google Scholar 

  4. Nemilov SV (2000) Physical ageing of silicate glasses at room temperature: general regularities as a basis for the theory and the possibility of a priori calculation of the ageing rate. Glass Phys Chem 26:511

    Article  Google Scholar 

  5. Nemilov SV (2001) Physical ageing of silicate glasses at room temperature: the choice of quantitative characteristics of the process and the ranking of glasses by their tendency to ageing. Glass Phys Chem 27:214

    Article  Google Scholar 

  6. Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glassforming liquids and amorphous solids. J Appl Phys 88:3113

    Article  Google Scholar 

  7. Ngai KL (2011) Relaxation and diffusion in complex systems. Springer, New York

    Book  Google Scholar 

  8. Hodge IM (1995) Physical ageing in polymer glasses. Science 267:1945

    Article  Google Scholar 

  9. Shpotyuk O, Golovchak R, Kozdras A (2013) Physical aging of chalcogenide glasses. In: Adam J-L, Zhang X (eds) Preparation and properties of chalcogenide glasses. Woodhead, Cambridge

    Google Scholar 

  10. Golovchak R, Jain H, Shpotyuk O, Kozdras A, Saiter A, Saiter J-M (2008) Experimental verification of the reversibility window concept in binary As–Se glasses subjected to a long-term physical aging. Phys Rev B 78:014202

    Article  Google Scholar 

  11. Chen P, Boolchand P, Georgiev DG (2010) Long term aging of selenide glasses: evidence of sub-T g endotherms and pre-T g exotherms. J Phys 22:065104

    Google Scholar 

  12. Golovchak R, Kozdras A, Balitska V, Shpotyuk O (2012) Step-wise kinetics of natural physical ageing in arsenic selenide glasses. J Phys 24:505106

    Google Scholar 

  13. Saiter JM, Arnoult M, Grenet J (2005) Very long physical ageing in inorganic polymers exemplied by the Ge x Se1−x vitreous system. Phys B 355:370

    Article  Google Scholar 

  14. Gupta PK, Mauro JC (2009) Composition dependence of glass transition temperature and fragility. I. A topological model incorporating temperature-dependent constraints. J Chem Phys 130:094503

    Article  Google Scholar 

  15. Golovchak R, Kozdras A, Cz Gorecki, Shpotyuk O (2006) Gamma-irradiation-induced physical ageing in As–Se glasses. J Non-Cryst Solids 352:4960

    Article  Google Scholar 

  16. Golovchak R, Kozdras A, Kozyukhin S, Shpotyuk O (2009) High-energy & #x03B3;-irradiation effect on physical ageing in Ge–Se glasses. Nucl Instr Methods Phys Res B 267:2958

    Article  Google Scholar 

  17. Lucas P, King EA, Horner AD, Johnson BR, Sundaram SK (2006) Photostructural relaxation in As–Se–S glasses: effect of network fragility. J Non-Cryst Solids 352:2067

    Article  Google Scholar 

  18. Lucas P, King EA, Doraiswamy A, Jivaganont P (2005) Competitive photostructural effects in Ge–Se glass. Phys Rev B 71:104207

    Article  Google Scholar 

  19. Calvez L, Yang Zh, Lucas P (2008) Light-induced matrix softening of Ge–As–Se network glasses. Phys Rev Lett 101:177402

    Article  Google Scholar 

  20. Kozdras A, Golovchak R, Shpotyuk O, Szymura S, Saiter A, Saiter J-M (2011) Light-assisted physical ageing in chalcogenide glasses: dependence on the wavelength of incident photons. J Mater Res 26:2420

    Article  Google Scholar 

  21. Golovchak R, Kozdras A, Shpotyuk O, Kozyukhin S, Saiter J-M (2009) Long-term ageing behaviour in Ge–Se glasses. J Mater Sci 44:3962. doi:10.1007/s10853-009-3540-6

    Article  Google Scholar 

  22. Arun P, Vedeshwar AG (1997) Temperature rise at laser-irradiated spot in a low thermal conducting film. Phys B 229:409–415

    Article  Google Scholar 

  23. Buisson M, Gueguen Y, Laniel R, Cantoni Ch, Houizot P, Bureau B, Sangleboeuf J-C, Lucas P (2013) Mechanical model of giant photoexpansion and the role of photofluidity. Phys Status Solid B 246(8):1773–1785

    Google Scholar 

  24. Yannopoulos SN, Trunov ML (2009) Photoplastic effects in chalcogenide glasses: a review. Phys Status Solid B 246:1773

    Article  Google Scholar 

  25. Gueguen Y, Sangleboeuf J-Ch, Keryvin V, Lepine E, Yang Zh, Rouxel T, Point C, Bureau B, Zhang X-H, Lucas P (2010) High temperature elasticity and viscosity of Ge x Se1−x glasses in the glass transition range. Phys Rev B 82:1–134114

    Article  Google Scholar 

  26. Phillips JC (1996) Stretched exponential relaxation in molecular and electronic glasses Rep. Prog Phys 59:1133–1207

    Article  Google Scholar 

  27. Macdonald JR, Phillips JC (2005) Topological derivation of shape exponents for stretched exponential relaxation. J Chem Phys 122:074510

    Article  Google Scholar 

  28. Bohmer R, Angell CA (1992) Correlations of nonexponentiality and state dependence of relaxations with bond connectivity in Ge–As–Se supercooled liquids. Phys Rev B 45:10091

    Article  Google Scholar 

  29. Welch RC, Smith JR, Potuzak M, Guo X, Bowden BF, Kiczenski TJ, Allan DC, King EA, Ellison AJ, Mauro JC (2013) Dynamics of glass relaxation at room temperature. Phys Rev Lett 110:265901

    Article  Google Scholar 

  30. Naumis GG, Phillips JC (2012) Bifurcation of stretched exponential relaxation in microscopically homogeneous glasses. J Non-Cryst Solids 358:893–897

    Article  Google Scholar 

  31. Golovchak R, Ingram A, Kozdras A, Vlcek M, Roiland C, Bureau B, Shpotyuk O (2012) Initial stage of physical ageing in network glasses. Phil Mag 92:4182

    Article  Google Scholar 

  32. Golovchak R, Ingram A, Kozyukhin S, Shpotyuk O (2013) Free volume fragmentation in glassy chalcogenides during natural physical ageing as probed by PAL spectroscopy. J Non-Cryst Solids 377:49

    Article  Google Scholar 

  33. Nemilov SV, Johari GP (2003) A mechanism for spontaneous relaxation of glass at room temperature. Phil Mag 83:3117

    Article  Google Scholar 

  34. Jund Ph, Jullien R, Campbell I (2001) Random walks on fractals and stretched exponential relaxation. Phys Rev E 63:036131

    Article  Google Scholar 

  35. Di Leonardo R, Gentilini S, Ianni F, Ruocco G (2006) Aging and flow in a complex fluid. J Non-Cryst Solids 352:4928

    Article  Google Scholar 

  36. Golovchak R, Kovalskiy A, Miller AC, Jain H, Shpotyuk O (2007) Structure of Se-rich As–Se glasses by high-resolution X-ray photoelectron spectroscopy. Phys Rev B76:1–125208

    Google Scholar 

  37. Feltz A (1993) Amorphous inorganic materials and glasses. VCH, Weinheim

    Google Scholar 

  38. Mott NF, Davis EA (1971) Electronic processes in non-crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  39. Shieh SHM, LaCourse WC (1993) Ageing and sub-T g relaxation in arsenic selenide glass fibers. Mater Chem Phys 35:160

    Article  Google Scholar 

  40. McEnroe DJ, LaCourse WC (1989) Tensile strengths of Se, As2S3, As2Se3, and Ge30As15Se55 glass fibers. J Am Ceram Soc 72:1491

    Article  Google Scholar 

  41. Greaves GN, Sen S (2007) Inorganic glasses, glass-forming liquids and amorphizing solids. Adv Phys 56:1–166

    Article  Google Scholar 

  42. Golovchak R, Shpotyuk O, Kozyukhin S, Kovalskiy A, Miller AC, Jain H (2009) Structural paradigm of Se-rich Ge–Se glasses by high-resolution X-ray photoelectron spectroscopy. J Appl Phys 105:103704

    Article  Google Scholar 

  43. Tanaka K (1986) Configurational and structural models for photodarkening in glassy chalcogenides, Japanese. J Appl Phys 25:779

    Article  Google Scholar 

  44. Nagels P, Tichy L, Mertens R, Callaerts R (2000) Low-temperature photodarkening of the As x Se100−x system prepared by PECVD. Mater Lett 46:234

    Article  Google Scholar 

  45. Oheda H (1979) The exponential absorption edge in amorphous Ge–Se compounds. Jap J Appl Phys 18:1973

    Article  Google Scholar 

  46. Kastner M, Adler D, Fritzsche H (1976) Valence-alternation model for localized gap states in lone-pair semiconductors. Phys Rev Lett 37:1504–1507

    Article  Google Scholar 

  47. Tanaka K (2004) Midgap photon effects in As2S3 glass. Phil Mag Lett 84:601

    Article  Google Scholar 

  48. Ho N, Laniel JM, Vallee R, Villeneuve A (2003) Photosensitivity of As2S3 chalcogenide thin films at 1.5 μm. Opt Lett 28:965

    Article  Google Scholar 

  49. Borisova ZU (1981) Glassy semiconductors. Plenum Press, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Golovchak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovchak, R., Kozdras, A. & Shpotyuk, O. Kinetics of light-assisted physical ageing in chalcogenide glasses. J Mater Sci 49, 2844–2852 (2014). https://doi.org/10.1007/s10853-013-7990-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7990-5

Keywords

Navigation