Journal of Materials Science

, Volume 49, Issue 5, pp 2338–2346 | Cite as

An investigation of the damage mechanisms and fatigue life diagrams of flax fiber-reinforced polymer laminates

  • Ihab El Sawi
  • Zouheir Fawaz
  • Redouane Zitoune
  • Habiba Bougherara


In this paper we investigated the fatigue damage of a unidirectional flax-reinforced epoxy composite using infrared (IR) thermography. Two configurations of flax/epoxy composites layup were studied namely, [0]16 unidirectional ply orientation and [±45]16. The high cycle fatigue strength was determined using a thermographic criterion developed in a previous study. The fatigue limit obtained by the thermographic criterion was confirmed by the results obtained through conventional experimental methods (i.e., Stress level versus Number of cycles to failure). Furthermore, a model for predicting the fatigue life using the IR thermography was evaluated. The model was found to have a good predictive value for the fatigue life. In order to investigate the mechanism of damage initiation in flax/epoxy composites and the damage evolution, during each fatigue test we monitored the crack propagation for a stress level and at different damage stages, a direct correlation between the percentage of cracks and the mean strain was observed.


Fatigue Fatigue Life Ultimate Tensile Strength Fatigue Test Composite Laminate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wambua P, Ivens J, Verpoest I (2003) Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics? Compos Sci Technol 63:1259–1264. doi: 10.1016/S0266-3538(03)00096-4 CrossRefGoogle Scholar
  2. 2.
    Fowler PA, Hughes JM, Elias RM (2006) Biocomposites: technology, environmental credentials and market forces. J Sci Food Agric 86:1781–1789. doi: 10.1002/jsfa.2558 CrossRefGoogle Scholar
  3. 3.
    Katogi H, Shimamura Y, Tohgo K, Fujii T (2012) Fatigue behavior of unidirectional jute spun yarn reinforced pla. Adv Compos Mater 21:1–10. doi: 10.1163/156855111x610226 Google Scholar
  4. 4.
    Hughes M, Carpenter J, Hill C (2007) Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites. J Mater Sci 42:2499–2511. doi: 10.1007/s10853-006-1027-2 CrossRefGoogle Scholar
  5. 5.
    Harris B (2003) Fatigue in composites: science and technology of the fatigue response of fibre-reinforced plastics. Woodhead Publishing Limited, OxfordCrossRefGoogle Scholar
  6. 6.
    Vassilopoulos AP (2010) Fatigue Life Prediction of Composites and Composite Structures. Woodhead Publishing Limited, OxfordCrossRefGoogle Scholar
  7. 7.
    Pitarresi G, Patterson E (2003) A review of the general theory of thermoelastic stress analysis. J Strain Anal Eng Des 38:405–417CrossRefGoogle Scholar
  8. 8.
    Kelvin WTB (1878) On the thermoelastic, thermomagnetic, and pyroelectric properties of matter. Philos Mag 5:4–27CrossRefGoogle Scholar
  9. 9.
    Greene R, Patterson E, Rowlands R (2008) In: Sharpe WN Jr (ed) Springer handbook of experimental solid mechanics. Springer, New YorkGoogle Scholar
  10. 10.
    Dulieu-Barton JM (1999) Introduction to thermoelastic stress analysis. Strain 35:35–39. doi: 10.1111/j.1475-1305.1999.tb01123.x CrossRefGoogle Scholar
  11. 11.
    Luong MP (1998) Fatigue limit evaluation of metals using an infrared thermographic technique. Mech Mater 28:155–163. doi: 10.1016/S0167-6636(97)00047-1 CrossRefGoogle Scholar
  12. 12.
    Luong MP (1995) Infrared thermographic scanning of fatigue in metals. Nucl Eng Des 158:363–376. doi: 10.1016/0029-5493(95)01043-H CrossRefGoogle Scholar
  13. 13.
    Luong MP (1992) In: Jan E (ed) Thermosense XIVSPIE–the international society for optical engineering. Florida, OrlandoGoogle Scholar
  14. 14.
    GA Kurilenko (2004) Science and Technology, 2004. KORUS 2004. Proceedingsof the 8th Russian-Korean International Symposium on, Vol. 3. p 32–34Google Scholar
  15. 15.
    JC Krapez, D Pacou, C Bertin, FOndéedr aérospatiales (2000) Application of lock-in thermography to rapid evaluation of fatigue limit in metals. Office national d″ etudes et de recherches a′ erospatialesGoogle Scholar
  16. 16.
    La Rosa G, Risitano A (2000) Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Intern J Fatigue 22:65–73. doi: 10.1016/S0142-1123(99)00088-2 CrossRefGoogle Scholar
  17. 17.
    Fargione G, Geraci A, La Rosa G, Risitano A (2002) Rapid determination of the fatigue curve by the thermographic method. Intern J Fatigue 24:11–19. doi: 10.1016/S0142-1123(01)00107-4 CrossRefGoogle Scholar
  18. 18.
    J-C Krapez, D Pacou (2002) Thermography detection of damage initiation during fatigue tests. Thermosense 435–449. doi: 10.1117/12.459593
  19. 19.
    Quaresimin M, Guglielmino E (2000) In: Paolo P (ed) Proceedings of the fifth seminar on experimental techniques and design in composite materials. Trans tech publications, CagliariGoogle Scholar
  20. 20.
    Dattoma V, Marcuccio R, Pappalettere C, Smith GM (2001) Thermographic investigation of sandwich structure made of composite material. NDT E Intern 34:515–520. doi: 10.1016/S0963-8695(00)00082-7 CrossRefGoogle Scholar
  21. 21.
    Montesano J, Fawaz Z, Bougherara H (2013) Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite. Compos Struct 97:76–83. doi: 10.1016/j.compstruct.2012.09.046 CrossRefGoogle Scholar
  22. 22.
    Karama M (2011) Determination of the fatigue limit of a carbon/epoxy composite using thermographic analysis. Struct Control Health Monit 18:781–789. doi: 10.1002/stc.485 CrossRefGoogle Scholar
  23. 23.
    Belmares H, Barrera A, Monjaras M (1983) New composite-materials from natural hard fibers. 2. Fatigue studies and a novel fatigue degradation model. Ind Eng Chem Prod Res Develop 22:643–652. doi: 10.1021/i300012a024 CrossRefGoogle Scholar
  24. 24.
    Gassan J (2002) A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Compos Part A 33:369–374. doi: 10.1016/S1359-835X(01)00116-6 CrossRefGoogle Scholar
  25. 25.
    Towo AN, Ansell MP (2008) Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre-thermosetting resin composites. Compos Sci Technol 68:925–932. doi: 10.1016/j.compscitech.2007.08.022 CrossRefGoogle Scholar
  26. 26.
    Silva FD, Chawla N, de Toledo RD (2009) An experimental investigation of the fatigue behavior of sisal fibers. Mater Sci Eng a-Struct Mater Prop Microstruct Process 516:90–95. doi: 10.1016/j.msea.2009.03.026 CrossRefGoogle Scholar
  27. 27.
    Belaadi A, Bezazi A, Bourchak M, Scarpa F (2013) Tensile static and fatigue behaviour of sisal fibres. Mater Des 46:76–83. doi: 10.1016/j.matdes.2012.09.048 CrossRefGoogle Scholar
  28. 28.
    Gassan J, Bledzki AK (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos Sci Technol 59:1303–1309. doi: 10.1016/S0266-3538(98)00169-9 CrossRefGoogle Scholar
  29. 29.
    Towo AN, Ansell MP (2008) Fatigue of sisal fibre reinforced composites: constant-life diagrams and hysteresis loop capture. Compos Sci Technol 68:915–924. doi: 10.1016/j.compscitech.2007.08.021 CrossRefGoogle Scholar
  30. 30.
    Shah DU, Schubel PJ, Clifford MJ, Licence P (2013) Fatigue life evaluation of aligned plant fibre composites through S–N curves and constant-life diagrams. Compos Sci Technol 74:139–149. doi: 10.1016/j.compscitech.2012.10.015 CrossRefGoogle Scholar
  31. 31.
    Liang S, Gning PB, Guillaumat L (2012) A Comparative Study of Fatigue Behaviour of Flax/Epoxy and Glass/Epoxy Composites. Compos Sci Technol 72:535–543. doi: 10.1016/j.compscitech.2012.01.011 CrossRefGoogle Scholar
  32. 32.
    Astm Standard D3039/D3039 m-08 (2007) Standard test method for tensile properties of polymer matrix composite materials. Am Soc Test MaterGoogle Scholar
  33. 33.
    Astm Standard D 3479/D 3479 m-12 (2007), Standard test method for tension–tension fatigue of polymer matrix composite materials. Am Soc Test MaterGoogle Scholar
  34. 34.
    Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A 33:939–948. doi: 10.1016/S1359-835X(02)00040-4 CrossRefGoogle Scholar
  35. 35.
    Spatz H, Kohler L, Niklas K (1999) Mechanical behaviour of plant tissues: composite materials or structures? J Exp Biol 202:3269–3272Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ihab El Sawi
    • 1
  • Zouheir Fawaz
    • 2
  • Redouane Zitoune
    • 3
  • Habiba Bougherara
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringRyerson UniversityTorontoCanada
  2. 2.Department of Aerospace EngineeringRyerson UniversityTorontoCanada
  3. 3.Institut Clément Ader (INSA, UPS, Mines Albi, ISAE)Université de ToulouseToulouseFrance

Personalised recommendations