Advertisement

Journal of Materials Science

, Volume 49, Issue 5, pp 2235–2242 | Cite as

Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels

  • Hu Tang
  • Han Chen
  • Bo Duan
  • Ang Lu
  • Lina Zhang
Article

Abstract

Novel superabsorbent chitin/carboxymethylcellulose (CMC) hydrogels were successfully prepared from mixture of CMC and chitin solution dissolved in 8 wt% NaOH/4 wt% urea aqueous system at low temperature by crosslinking with epichlorohydrin. The morphology and structure of the resultant composite hydrogels were investigated by scanning electron microscope, thermogravimetry, and Fourier transform infrared spectroscopy. The results indicated that the stiff chains of chitin are as a strong backbone in the hydrogel to support the pore wall, whereas the CMC contributed to water absorption. The maximum swelling ratio in water reached an exciting level of 1300 as the hydrogels still kept an intact appearance. Moreover, the hydrogels exhibited smart swelling and shrinking behaviors in NaCl and CaCl2 aqueous solution, showing salt-responsive adsorption behaviors in different media. This work provided a “green” pathway to prepare chitin-based superabsorbent hydrogels, which would be potential for the application in the biodegradable water-absorbent material field.

Keywords

Chitin Epichlorohydrin Hydrogel Sample Superabsorbent Polymer Synthetic Urine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program, 2010CB732203), the Major Program of National Natural Science Foundation of China (21334005), and the National Natural Science Foundation of China (20874079 and 51203122).

References

  1. 1.
    Pourjavadi A, Harzandi A, Hosseinzadeh H (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40:1363CrossRefGoogle Scholar
  2. 2.
    Pourjavadi A, Harzandi A, Amini-Fazl M (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44:1209CrossRefGoogle Scholar
  3. 3.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92CrossRefGoogle Scholar
  4. 4.
    Murthy P, Mohan Y, Varaprasad K, Sreedhar B, Raju K (2008) First successful design of semi-IPN hydrog–silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318:217CrossRefGoogle Scholar
  5. 5.
    Kim J, Lee K, Hefferan T, Currier B, Yaszemski M, Lu L (2008) Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Biomacromolecules 9:149CrossRefGoogle Scholar
  6. 6.
    Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699CrossRefGoogle Scholar
  7. 7.
    Pourjavadi A, Ghasemzadeh H, Soleyman R (2007) Synthesis, characterization, and swelling behavior of alginate-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. J Appl Polym Sci 105:2631CrossRefGoogle Scholar
  8. 8.
    Chu M, Zhu S, Li H, Huang Z, Li S (2006) Synthesis of poly(acrylic acid)/sodium humate superabsorbent composite for agricultural use. J Appl Polym Sci 102:5137CrossRefGoogle Scholar
  9. 9.
    Kamat M, Malkani R (2003) Disposable diapers: a hygienic alternative. Indian J Pediatr 70:879CrossRefGoogle Scholar
  10. 10.
    Yi J, Zhang L (2008) Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels. Bioresour Technol 99:2182CrossRefGoogle Scholar
  11. 11.
    Sadeghi M, Hosseinzadeh H (2008) Synthesis of starch-poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioactive Compat Polym 23:381CrossRefGoogle Scholar
  12. 12.
    Ende M, Hariharan D, Peppas N (1995) Factors influencing drug and protein transport and release from ionic hydrogels. React Funct Polym 25:127Google Scholar
  13. 13.
    Wang J, Wang W, Wang A (2010) Synthesis, characterization and swelling behaviors of hydroxyethyl cellulose-g-poly(acrylic acid)/attapulgite superabsorbent composite. Polym Eng Sci 50:1019CrossRefGoogle Scholar
  14. 14.
    Narimani F, Zohuriaan-Mehr MJ, Kabiri K, Bouhendi H, Omidian H, Najafi V (2012) Overentrant swelling behaviour of poly(potassium, 3-sulfopropyl acrylate-acrylic acid) gels. J Polym Res 19:7CrossRefGoogle Scholar
  15. 15.
    Chang C, Chen S, Zhang L (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21:3865CrossRefGoogle Scholar
  16. 16.
    Wu F, Zhang Y, Liu L, Yao J (2012) Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste. Carbohydr Polym 87:2519CrossRefGoogle Scholar
  17. 17.
    Tang H, Zhou W, Lu A, Zhang L (2013) Characterization of new sorbent constructed from Fe3O4/chitin magnetic beads for the dynamic adsorption of Cd2+ ions. J Mater Sci. doi: 10.1007/s10853-013-7684-z Google Scholar
  18. 18.
    Zohuriaan-Mehr M, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45:5711. doi: 10.1007/s10853-010-4780-1 CrossRefGoogle Scholar
  19. 19.
    Hua F (2001) Synthesis of self-crosslinking sodium polyacrylate hydrogel and water-absorbing mechanism. J Mater Sci 36:731. doi: 10.1023/A:1004849210718 CrossRefGoogle Scholar
  20. 20.
    Liu H, Wang C, Gao Q, Tong Z (2008) Fabrication of novel core-shell hybrid alginate hydrogel beads. Int J Pharm 351:104CrossRefGoogle Scholar
  21. 21.
    Dond H, Xu Q, Li Y, Mo S (2008) The synthesis of biodegradable graft copolymer cellulose-graft-poly(l-lactide) and the study of its controlled drug release. Colloid Surf B 66:26CrossRefGoogle Scholar
  22. 22.
    Bidgoli H, Zamani A, Taherzadeh M (2010) Effect of carboxymethylation conditions on the water-binding capacity of chitosan-based superabsorbents. Carbohydr Res 345:2683CrossRefGoogle Scholar
  23. 23.
    Vrieze S, Westbroek P, Camp T, Langenhove L (2007) Electrospinning of chitosan nanofibrous structures: feasibility study. J Mater Sci 42:8029. doi: 10.1007/s10853-006-1485-6 CrossRefGoogle Scholar
  24. 24.
    Zhang L, Tang H, Chang C (2010) China Patent ZL, 201010201892.3Google Scholar
  25. 25.
    Rosa BA, Quintana P, Ardisson P, Limón JM, Gil JJ (2012) Effects of thermal treatments on the structure of two black coral species chitinous exoskeleton. J Mater Sci 47:990. doi: 10.1007/s10853-011-5878-9 CrossRefGoogle Scholar
  26. 26.
    Ghosh A, Ali M (2012) Studies on physicochemical characteristics of chitosan derivatives with dicarboxylic acids. J Mater Sci 47:1196. doi: 10.1007/s10853-011-5885-x CrossRefGoogle Scholar
  27. 27.
    Tian F, Liu Y, Hu K, Zhao B (2003) The depolymerization mechanism of chitosan by hydrogen peroxide. J Mater Sci 38:4709. doi: 10.1023/A:1027466716950 CrossRefGoogle Scholar
  28. 28.
    Chang C, Peng J, Zhang L, Pang D (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19:7771CrossRefGoogle Scholar
  29. 29.
    Tang H, Zhang L, Hu L, Zhang L (2013) Application of chitin hydrogels for seed germination, seedling growth of rapeseed. J Plant Growth Regul. doi: 10.1007/s00344-013-9361-5 Google Scholar
  30. 30.
    Tang H, Zhou W, Zhang L (2012) Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J Hazard Mater 209–210:218CrossRefGoogle Scholar
  31. 31.
    Tang H, Chang C, Zhang L (2011) Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway. Chem Eng J 173:689CrossRefGoogle Scholar
  32. 32.
    Miguel I, Rieumajou D, Betbeder D (1999) New methods to determine the extent of reaction of epichlorohydrin with maltodextrins. Carbohydr Res 319:17CrossRefGoogle Scholar
  33. 33.
    Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209:1266CrossRefGoogle Scholar
  34. 34.
    Dong J, Ozaki Y (1997) FTIR and FT-Raman studies of partially miscible poly(methyl methacrylate)/poly(4-vinylphenol) blends in solid states. Macromolecules 30:286CrossRefGoogle Scholar
  35. 35.
    Tang H, Lu A, Li L, Zhow W, Xie Z, Zhang L (2013) Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chem Eng J 234:124CrossRefGoogle Scholar
  36. 36.
    Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183CrossRefGoogle Scholar
  37. 37.
    Liu T, Qian L, Li B, Li J, Zhu K, Deng H, Yang X, Wang X (2013) Homogeneous synthesis of chitin-based acrylate superabsorbents in NaOH/urea solution. Carbohydr Polym 94:261CrossRefGoogle Scholar
  38. 38.
    Yoshimura T, Matsuo K, Fujioka R (2006) Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: synthesis and characterization. J Appl Polym Sci 99:3251CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Kang J, Tan T (2006) Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid). Polymer 47:7702CrossRefGoogle Scholar
  40. 40.
    Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33:7475CrossRefGoogle Scholar
  41. 41.
    Kim S, Shin S, Shin D, Kim I, Kim S (2005) Synthesis and characteristics of semi-interpenetrating polymer network hydrogels based on chitosan and poly(hydroxy ethyl methacrylate). J Appl Polym Sci 96:86CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hu Tang
    • 1
  • Han Chen
    • 1
  • Bo Duan
    • 1
  • Ang Lu
    • 1
  • Lina Zhang
    • 1
  1. 1.Department of ChemistryWuhan UniversityWuhanChina

Personalised recommendations