Journal of Materials Science

, Volume 49, Issue 5, pp 2117–2126 | Cite as

Heavily impregnated ceria nanoparticles with europium oxide: spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments

  • Daniel Avram
  • Codruta Rotaru
  • Bogdan Cojocaru
  • Margarita Sanchez-Dominiguez
  • Mihaela Florea
  • Carmen Tiseanu


We report on the homogeneity, structural and luminescence properties of ceria nanoparticles doped with Eu3+. Eu3+ in concentration of 1, 5 and 10 wt% was incorporated via wetness impregnation into preformed ceria nanoparticles followed by calcination in air at 1000 °C. A remarkable homogeneity of Eu3+-ceria solid solutions is measured for ceria grown by citrate and micro-emulsion methods using Raman, Diffuse Reflectance in UV–Vis, photoluminescence spectroscopies and X-ray diffraction, even for the Eu3+ concentration of 10 wt%. The emission properties of all Eu3+-doped ceria samples are well-characterized by a two main centre model assigned to perturbed and isolated Eu3+ centres. These centres correspond to Eu3+ located in the nearest (local symmetry lower than cubic and Eu3+-oxygen coordination lower than eight) and next-nearest-neighbour positions (cubic local symmetry and eightfold Eu3+-oxygen coordination) to oxygen vacancy, respectively. With increase of Eu3+ concentration, both the oxygen vacancy concentration and the relative contribution of the perturbed Eu3+ centre to the total emission increase. It is established that the characteristic emission and excitation spectra of the two main Eu3+ centres as well as the overall multisite distribution of Eu3+ within ceria lattice are intrinsic properties of Eu3+-doped ceria since these do not depend on synthesis route, nanoparticle size and Eu3+ concentration.


Ceria CeO2 Eu2O3 Phonon Band Asymmetry Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Avram D, Cojocaru B and Tiseanu C acknowledge the Romanian National Authority for Scientific Research(CNCS-UEFISCDI) (project number PN-II-ID-PCE-2011-3-0534) for the financial support. Tiseanu C and Florea M also acknowledge COST Action CM1104 ‘Reducible oxide chemistry, structure and functions’.

Supplementary material

10853_2013_7904_MOESM1_ESM.pdf (275 kb)
Supplementary material 1 (PDF 274 kb)


  1. 1.
    Gerhardt-Anderson R, Nowick AS (1981) Ionic conductivity of CeO2 with trivalent dopants of different ionic radii. Solid State Ionics 5:547–550CrossRefGoogle Scholar
  2. 2.
    Kumar A, Babu S, Karakoti AS, Schulte A, Seal S (2009) Luminescence properties of europium-doped cerium oxide nanoparticles: role of vacancy and oxidation states. Langmuir 25:10998–11007CrossRefGoogle Scholar
  3. 3.
    Sahu T, Singh Bisht S, Ranjan Das K, Kerkar S (2013) Nanoceria: synthesis and biomedical applications. Curr Nanosci 9:588–593CrossRefGoogle Scholar
  4. 4.
    Yan CH, Sun LD, Liao CS, Zhang YX, Lu YQ, Huang HS, Lu SZ (2003) Eu3+ ion as fluorescent probe for detecting the surface effect in nanocrystals. Appl Phys Lett 82:3511–3513CrossRefGoogle Scholar
  5. 5.
    Reisfeld R, Zigansky E, Gaft M (2004) Europium probe for estimation of site symmetry in glass films, glasses and crystals. Mol Phys 102:1319–1330CrossRefGoogle Scholar
  6. 6.
    Fujihara S, Oikawa M (2004) Structure and luminescent properties of CeO2: rare earth (RE = Eu3+ and Sm3+) thin films. J Appl Phys 95:12CrossRefGoogle Scholar
  7. 7.
    Choudhury B, Choudhury A (2012) Lattice distortion and corresponding changes in optical properties of CeO2 nanoparticles on Nd doping. Curr Appl Phys 13:217–223CrossRefGoogle Scholar
  8. 8.
    Liu X, Chen S, Wang S (2007) Synthesis and photoluminescence of CeoO2:Eu3+ phosphor powders. J Lumin 127:650–654CrossRefGoogle Scholar
  9. 9.
    Wang Z, Quan Z, Lin J (2007) Remarkable changes in the optical properties of CeO2 nanocrystals induced by lanthanide ions doping. Inorg Chem 46:5237–5242CrossRefGoogle Scholar
  10. 10.
    Babu S, Schulte A, Seal S (2008) Defects and simmetry influence on visible emission of Eu doped nanoceria. Appl Phys Lett 92:123112CrossRefGoogle Scholar
  11. 11.
    Li L, Yang K, Moon BK, Fu Z, Guo C, Jeong JH, Yi SS, Jang K, Lee HS (2009) Photoluminescence properties of CeO2:Eu3+ nanoparticles synthesized by a sol–gel method. J Phys Chem 113:610–617Google Scholar
  12. 12.
    Zeng L, Chen D, Cui L, Huang F, Wang Y (2010) High-content bulk doping and thermal stability of rare earth ions in CeO2 nanocrystals. Scipta Materialia 63:661–664CrossRefGoogle Scholar
  13. 13.
    Tiseanu C, Parvulescu VI, Boutonnet M, Cojocaru B, Primus PA, Teodorescu CM, Solans C, Sanchez-Dominguez M (2011) Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water micro- emulsion method. Phys Chem Chem Phys 13:17135–17145CrossRefGoogle Scholar
  14. 14.
    Tiseanu C, Parvulescu VI, Sanchez-Dominguez M, Boutonnet M (2012) Temperature induced conversion from surface to “bulk” sites in Eu3+- impregnated CeO2. J Appl Phys 112:013521CrossRefGoogle Scholar
  15. 15.
    Chae KW, Park TR, Cheon CI, Cho NI, Kim JS (2013) Enhanced phasemiscibility and luminescence by inducing oxygen vacancies in Ce1−xEuxO2- under a strongly reducing atmosphere. J Lumin 136:109–116CrossRefGoogle Scholar
  16. 16.
    Sanchez-Dominguez M, Boutonnet M, Solans C (2009) A novel approach to metal and metal oxide nanoparticle synthesis: the oil-in-water micro- emulsion reaction method. J Nanopart Res 11:1823–1829CrossRefGoogle Scholar
  17. 17.
    Courty P, Ajot H, Marcilly C, Delmon B (1973) Oxydes mixtes ou en solution solide sous forme très divisée obtenus par décomposition thermique de précurseurs amorphes. Powder Technol 7:21–38CrossRefGoogle Scholar
  18. 18.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chaleogenides. Acta Cryst 32:751–767CrossRefGoogle Scholar
  19. 19.
    Corma A, Atienzar P, Garcia H, Chane-Ching JY (2004) Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat Mater 3:394–397CrossRefGoogle Scholar
  20. 20.
    Bensalem A, Muller JC, Bozon-Verduraz F (1992) Faraday communications. From bulk CeO2 to supported cerium–oxygen clusters: a diffuse reflectance approach, J. Chem Soc, Faraday Trans. 88:153–154. doi: 10.1039/FT9928800153 CrossRefGoogle Scholar
  21. 21.
    Fornasiero P, Speghini A, Di Monte R, Bettinelli M, Kašpar J, Bigotto A, Sergo V, Graziani M (2004) Laser-excited luminescence of trivalent lanthanide impurities and local structure in CeO2–ZrO2 mixed oxides. Chem Mater 16:1938–1944CrossRefGoogle Scholar
  22. 22.
    Tiseanu C, Cojocaru B, Parvulescu V, Sanchez-Dominguez M, Primus PA, Boutonnet M (2012) Order and disorder effects in nano-ZrO2 investigated by micro-Raman and spectrally and temporarily resolved photoluminescence. Phys Chem Chem Phys 14(37):12970–12981. doi: 10.1039/c2cp41946g CrossRefGoogle Scholar
  23. 23.
    Tiseanu C, Parvulescu V, Cojocaru B, Pemartin K, Sanchez-Dominguez M, Boutonnet M (2012) In situ Raman and time-resolved luminescence investigation of local structure of ZrO2 in the amorphous to crystalline phase transition. J Phys Chem C 116:16776–16783CrossRefGoogle Scholar
  24. 24.
    Spanier JE, Robinson RD, Zhang F, Chan SW, Herman IP (2001) Size-dependent properties of CeO2−y nanoparticles as studied by Raman scattering. Phys Rev B 64:245407CrossRefGoogle Scholar
  25. 25.
    McBride JR, Hass KC, Poindexter BD, Weber WH (1994) Raman and x-ray studies of Ce(1−x) RE(x) O(2−y), where RE = La, Pr, Nd, Eu, Gd, and Tb. J Appl Phys 76:2435–2441CrossRefGoogle Scholar
  26. 26.
    Zhang F, Chan S-W, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP (2002) Cerium oxide nanoparticles: size-selective formation and structure analysis. Appl Phys Lett 80:127–129CrossRefGoogle Scholar
  27. 27.
    Hernandez WY, Centeno MA, Romero-Sarria F, Odriozola JA (2009) Synthesis and characterization of Ce1−xEuxO2−x/2 mixed oxides and their catalytic activities for CO oxidation. J Phys Chem C 113:5629–5635CrossRefGoogle Scholar
  28. 28.
    Dilawar N, Mehrotra S, Varandani D, Kumaraswamy BV, Haldar SK, Bandyopadhyay AK (2008) A Raman spectroscopic study of C-type rare earth sesquioxides. Mat Characterization 59:462–467CrossRefGoogle Scholar
  29. 29.
    Eilers H, Tissue BM (1996) Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3 Chem. Phys. Lett. 251:74–78Google Scholar
  30. 30.
    Görller-Walrand C, Fluyt L, Ceulemans A, Carnall WT (1991) Magnetic dipole transitions as standards for Judd–Ofelt parameterization in lanthanide spectra. J Chem Phys 95:3099–3106CrossRefGoogle Scholar
  31. 31.
    Oomen EWJL, Van Dongen AMA (1989) Europium (III) in oxide glasses: dependence of the emission spectrum upon glass composition. J Non-Cryst Solids 111:205–213CrossRefGoogle Scholar
  32. 32.
    Tiseanu C, Parvulescu V, Sanchez Dominguez M, Boutonnet M (2012) Temperature induced conversion from surface to bulk sites in Eu3+- impregnated CeO2. J Appl Phys 112:013521CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Avram
    • 1
  • Codruta Rotaru
    • 2
  • Bogdan Cojocaru
    • 2
  • Margarita Sanchez-Dominiguez
    • 3
    • 4
  • Mihaela Florea
    • 2
  • Carmen Tiseanu
    • 1
  1. 1.National Institute for Laser, Plasma and Radiation PhysicsBucharest-MagureleRomania
  2. 2.Department of Chemical Technology and CatalysisUniversity of BucharestBucharestRomania
  3. 3.Centro de Investigación en Materiales Avanzados, S. C. (CIMAV)Unidad MonterreyApodacaMexico
  4. 4.Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), CIBER en BiotecnologiaBiomateriales y Nanomedicina (CIBER BBN)BarcelonaSpain

Personalised recommendations