Journal of Materials Science

, Volume 49, Issue 5, pp 2054–2062 | Cite as

Selective silencing of the electrical properties of metallic single-walled carbon nanotubes by 4-nitrobenzenediazonium tetrafluoroborate



A simple and scalable method has been developed to preferentially eliminate metallic species in several commercial single-walled carbon nanotubes (SWCNTs), such as CoMoCAT 65, CoMoCAT 76, CG 200, HiPco, and arc discharge (P2) SWCNTs, using 4-nitrobenzenediazonium salts by tuning the types and concentrations of surfactants in aqueous solutions. The selectivity in commonly used surfactant solutions was confirmed by ultra violet-visible-near infrared spectra, Raman spectra and electrical characterization. Good-performance printed thin-film transistors (TFTs) were obtained by inkjet printing. The printed TFTs exhibited excellent electrical properties with effective mobility and on/off ratio upto 3.54 cm2 V−1 s−1 and 3 × 105, respectively. This method does not require complicated reaction conditions and tedious purification procedure, therefore, promises low-cost production of high-performance printed TFT devices for electronic applications.


Inkjet Printing Diazonium Salt Metallic Species Density Gradient Ultracentrifugation Hydrogen Environment 



This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-EW-M02), Natural Science Foundation of China (91123034, 61102046), and Basic Research Program of Jiangsu Province (BK2011364).

Supplementary material

10853_2013_7895_MOESM1_ESM.docx (770 kb)
Supplementary material 1 (DOCX 769 kb)


  1. 1.
    Noh J, Jung M, Jung K, Lee G, Kim J, Lim S, Kim D, Choi Y, Kim Y, Subramanian V, Cho G (2011) Fully gravure-printed D flip-flop on plastic foils using single-walled carbon-nanotube-based TFTs. IEEE Electron Device Lett 32(5):638–640CrossRefGoogle Scholar
  2. 2.
    Jung M, Kim J, Noh J, Lim N, Lim C, Lee G, Kim J, Kang H, Jung K, Leonard AD, Tour JM, Cho G (2010) All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices 57(3):571–580CrossRefGoogle Scholar
  3. 3.
    Cho JH, Lee JY, Xia Y, Kim B, He YY, Renn MJ, Lodge TP, Frisbie CD (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7(11):900–906CrossRefGoogle Scholar
  4. 4.
    Kim MG, Kanatzidis MG, Facchetti A, Marks TJ (2011) Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater 10(5):382–388CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Di C, Gao X, Hu Y, Guo Y, Zhang L, Liu Y, Wang J, Hu E, Zhu D (2011) All-solution-processed, high-performance n-channel organic transistors and circuits: toward low-cost ambient electronics. Adv Mater 23(21):2448–2453CrossRefGoogle Scholar
  6. 6.
    Vaillancourt J, Zhang HY, Vasinajindakaw P, Xia HT, Lu XJ, Han XL, Chen RT, Berger U, Renn M (2008) All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz. Appl Phys Lett 93(24):243301–243303CrossRefGoogle Scholar
  7. 7.
    Gracia-Espino E, Sala G, Pino F, Halonen N, Luomahaara J, Maklin J, Kords K, Vajtai R (2010) Electrical transport and field-effect transistors using inkjet-printed sWCNT films having different functional side groups. ACS Nano 4(6):3318–3324CrossRefGoogle Scholar
  8. 8.
    Ding L, Tselev A, Wang J, Yuan D, Chu H, Li Y, Liu J (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano lett 9(2):800–805CrossRefGoogle Scholar
  9. 9.
    Ryu K, Badmaev A, Wang C, Lin A, Patil N, Mitra S, Zhou C (2009) CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett 9(1):189–197CrossRefGoogle Scholar
  10. 10.
    Cao Q, Kim HS, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454(7203):495–500CrossRefGoogle Scholar
  11. 11.
    Yu WJ, Lee SY, Chae SH, Perello D, Han GH, Yun M, Lee YH (2011) Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett 11(3):1344–1350CrossRefGoogle Scholar
  12. 12.
    Sun DM, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotech 6(3):156–161CrossRefGoogle Scholar
  13. 13.
    Okimoto H, Takenobu T, Yanagi K, Miyata Y, Shimotani H, Kataura H, Iwasa Y (2010) Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing. Adv Mater 22(36):3981–3986CrossRefGoogle Scholar
  14. 14.
    Zhao JW, Gao YL, Lin J, Chen Z, Cui Z (2012) Printed thin-film transistors with functionalized single-walled carbon nanotube inks. J Mater Chem 22(5):2051–2056CrossRefGoogle Scholar
  15. 15.
    Zhao JW, Gao YL, Gu WB, Wang C, Lin J, Chen Z, Cui Z (2012) Fabrication and electrical properties of all-printed carbon nanotube thin film transistors on flexible substrates. J Mater Chem 22(38):20747–20753CrossRefGoogle Scholar
  16. 16.
    Shi JS, Guo CX, Chan-Park MB, Li CM (2012) All-printed carbon nanotube finFETs on plastic substrates for high-performance flexible electronics. Adv Mater 24(3):358–361CrossRefGoogle Scholar
  17. 17.
    Chen P, Fu Y, Aminirad R, Wang C, Zhang JL, Wang K, Galatsis K, Zhou CW (2011) Fully printed seperated carbon nanotube thin film trasistor circuits and its application in organic light emitting diode control. Nano Lett 11(12):5301–5308CrossRefGoogle Scholar
  18. 18.
    Ha MJ, Xia Y, Green AA, Zhang W, Renn MJ, Kim CH, Hersam MC, Frisbie CD (2010) Printed, sub-3 V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4(8):4388–4395CrossRefGoogle Scholar
  19. 19.
    Topinka MA, Rowell MW, Gorden DG, McGehee MD, Hecht DS, Gruner G (2009) Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett 9(5):1866–1871CrossRefGoogle Scholar
  20. 20.
    Krupke R, Hennrich F, Lohneysen HV, Kappes M (2003) Separating of metallic from semiconducting single walled carbon nanotubes. Science 301(5631):344–347CrossRefGoogle Scholar
  21. 21.
    Krupke R, Linden S, Rapp M, Hennrich F (2006) Thin film of metallic carbon nanotubes prepared by dielectrophoresis. Adv Mater 18(11):1468–1470CrossRefGoogle Scholar
  22. 22.
    Mesgari S, Poon YF (2012) High selectivity cum yield gel electrophoresis separation of single-walled carbon nanotubes using a chemically selective polymer dispersant. J Phys Chem C 116(18):10266–10273CrossRefGoogle Scholar
  23. 23.
    Li HB, Zhang J, Wen X, Song Q, Li QW (2010) Understanding the electrophoretic separation of single-walled carbon nanotubes assisted by thionine as a probe. J Phys Chem C 114(45):19234–19238CrossRefGoogle Scholar
  24. 24.
    Miyata Y, Maniwa Y, Kataura H (2006) Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide. J Phys Chem B 110(1):25–29CrossRefGoogle Scholar
  25. 25.
    Li H, Zhou B, Gu L, Wang W, Fernando KAS, Kumar S, Allard LF, Selective SunYP (2004) Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J Am Chem Soc 126(4):1014–1016CrossRefGoogle Scholar
  26. 26.
    Wang W, Fernando KAS, Lin Y, Meziani MJ, Veca LM, Cao L, Zhang P, Kimani MM, Sun YP (2008) Metallic single-walled carbon nanotubes for conductive nanocomposites. J Am Chem Soc 130(4):1415–1419CrossRefGoogle Scholar
  27. 27.
    Li W, Wang B, Goh TH, Li LJ, Yang Y, Cha CP, Chen Y (2008) Selective enrichment of (6, 5) and (8, 3) single-walled carbon nanotubes via co-surfactant extraction from narrow (n, m) distribution samples. J Phys Chem B 112(10):2771–2774CrossRefGoogle Scholar
  28. 28.
    Maeda Y, Kimura SI, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian Y, Nakahodo T, Tsuchiya T, Akasaka T, Lu J, Zang X, Tokumoto H, Saito R (2005) Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J Am Chem Soc 127(29):10287–10290CrossRefGoogle Scholar
  29. 29.
    Ju SY, Utz M, Papadimitrakopoulos F (2009) Enrichment mechanism of semiconducting single-walled carbon nanotubes by surfactant amines. J Am Chem Soc 131(19):6775–6784CrossRefGoogle Scholar
  30. 30.
    LeMieux M, Roberts M, Barmann S, Jin YW, Kim JM, Bao Z (2008) Self-sorted, aligned nanotube networks for thin-film transistors. Science 321(5885):101–103CrossRefGoogle Scholar
  31. 31.
    Lee CW, Wei L, Chen Y, Chan-Park MB, Tsai CH, Leou KC, Poa CH, Wang J, Li LJ (2008) Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles. J Phys Chem C 112(32):12089–12091CrossRefGoogle Scholar
  32. 32.
    Zheng M, Dinner BA (2004) Solution redox chemistry of carbon nanotubes. J Am Chem Soc 126(47):15490–15494CrossRefGoogle Scholar
  33. 33.
    Zheng M, Jagota A, Semke ED, Dinne BA, Lustig RA, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342CrossRefGoogle Scholar
  34. 34.
    Chen F, Wang B, Chen Y, Li LJ (2007) Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett 7(10):3013–3017CrossRefGoogle Scholar
  35. 35.
    Nish A, Hwang JY, Doig J, Nicholas RJ (2007) Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nanotech 2(10):640–646CrossRefGoogle Scholar
  36. 36.
    Ju SY, Doll J, Sharma I, Papadimitrakopoulos F (2008) Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nat Nanotech 3(6):356–362CrossRefGoogle Scholar
  37. 37.
    Liu ZY, Qiu ZJ, Zhang SL, Zhang ZB (2012) Small-hysteresis thin-film transistors achieved by facile dip-coating of nanotube/polymer composite. Adv Mater 24(27):3633–3638CrossRefGoogle Scholar
  38. 38.
    Bisri SZ, Gao J, Derenskyi V, Gomulya W, Iezhokin I, Gordiichuk P, Herrmann A, Loi MA (2012) High performance ambipolar field-effect transistor of random network carbon nanotubes. Adv Mater 24(46):6147–6152CrossRefGoogle Scholar
  39. 39.
    Tanaka T, Jin H, Miyata Y, Fujii S, Suga H, Naitoh Y, Minari T, Miyadera T, Tsukagoshi K, Kataura H (2009) Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett 9(4):1497–1500CrossRefGoogle Scholar
  40. 40.
    Liu HP, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309CrossRefGoogle Scholar
  41. 41.
    Hirano A, Tanaka T, Urabe Y, Kataura H (2012) Purification of single-wall carbon nanotubes by controlling the adsorbability onto agarose gels using deoxycholate. J Phys Chem C 116(17):9816–9823CrossRefGoogle Scholar
  42. 42.
    Gui H, Li HB, Tan FR, Jin H, Zhang J, Li QW (2012) Binary gradient elution of semiconducting single-walled carbon nanotubes by gel chromatography for their separation according to chirality. Carbon 50(1):332–335CrossRefGoogle Scholar
  43. 43.
    An L, Fu Q, Lu CG, Li J (2004) A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J Am Chem Soc 126(34):10520–10521CrossRefGoogle Scholar
  44. 44.
    Lee CW, Han X, Chen F, Wei J, Chen Y, Chan-Park MB, Li LJ (2010) Solution-processable carbon nanotubes for semiconducting thin-film transistor devices. Adv Mater 22(11):1278–1282CrossRefGoogle Scholar
  45. 45.
    Wang C, Cao Q, Ozel T, Gaur A, Rogers JA, Shim M (2005) Electronically selective chemical functionalization of carbon nanotubes: correlation between Raman spectral and electrical responses. J Am Chem Soc 127(32):11460–11468CrossRefGoogle Scholar
  46. 46.
    Balasubramanian K, Sordan R, Burghard M, Kern K (2004) A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett 4(5):827–830CrossRefGoogle Scholar
  47. 47.
    Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan HW, Kittrell C, Hauge R, Tour JM, Smalley RE (2003) Electronic structure control of single walled carbon nanotube functionalization. Science 301(5639):1519–1522CrossRefGoogle Scholar
  48. 48.
    Engel M, Small JP, Steiner M, Freitag M, Green AA, Hersam MC, Avouris P (2008) Thin film nanotube transistors based on self-assembled, aligned semiconducting carbon nanotube arrays. ACS Nano 2(12):2445–2452CrossRefGoogle Scholar
  49. 49.
    Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotech 1(1):60–65CrossRefGoogle Scholar
  50. 50.
    Kanungo M, Lu H, Malliaras GG, Blanchet GB (2009) Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Science 323(5911):234–237CrossRefGoogle Scholar
  51. 51.
    Zhao JW, Lee CW, Han XD, Chan-Park MB, Chen P, Li LJ (2009) Solution-processable semiconducting thin-film transistors using single-walled carbon nanotubes chemically modified by organic radical initiators. Chem Comm 46:7182–7184CrossRefGoogle Scholar
  52. 52.
    Peng HQ, Reverdy P, Khabashesku VN, Margrave JL (2003) Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. Chem Comm 40(3):362–363CrossRefGoogle Scholar
  53. 53.
    Blanch AJ, Lenehan CE, Quinton JS (2012) Dispersant effects in the selective reaction of aryl diazonium salts with single-walled carbon nanotubes in aqueous solution. J Phys Chem C 116(2):1709–1723CrossRefGoogle Scholar
  54. 54.
    Andrew J, Hilmer TPM, Lin SC, Zhang JQ, Wang QH, Mendenhall JD, Song C, Heller DA, Barone PW, Blankschtein D, Strano MS (2012) Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes. Langmuir 28(2):1309–1321CrossRefGoogle Scholar
  55. 55.
    Schmidt G, Filoramo A, Derycke V, Bourgoin JP, Chenevier P (2011) Labile diazo chemistry for efficient silencing of metallic carbon nanotubes. Chem-A Eur J 17(5):1415–1418CrossRefGoogle Scholar
  56. 56.
    Ramirez J, Mayo ML, Kilina S, Tretiak S (2013) Electronic structure and optical spectra of semiconducting carbon nanotubes functionalized by diazonium salts. Chem Phys 413:89–101CrossRefGoogle Scholar
  57. 57.
    Lin SC, Hilmer AJ, Mendenhall JD, Michael SS, Daniel B (2012) Molecular perspective on diazonium adsorption for controllable functionalization of single-walled carbon nanotubes in aqueous surfactant solutions. J Am Chem Soc 134(19):8194–8204CrossRefGoogle Scholar
  58. 58.
    Sundramoorthy AK, Mesgari S, Wang J, Kumar R, MA Sk, Yeap SH, Zhang Q, Sze SK, Lim KH, Chan-Park MB (2013) Scalable and effective enrichment of semiconducting single-walled carbon nanotubes by a dual selective naphthalene-based azo dispersant. J Am Chem Soc 135(15):5569–5581CrossRefGoogle Scholar
  59. 59.
    Tang QY, Shafiq I, Chan YC, Wong NB, Cheung R (2010) Study of the dispersion and electrical properties of carbon nanotubes treated by surfactants in dimethylacetamide. J Nanosci Nanotech 10:4967–4974CrossRefGoogle Scholar
  60. 60.
    Ntim SA, Sae-Khow O, Witzmann FA, Mitra S (2011) Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J Colloid Interface Sci 355:383–388CrossRefGoogle Scholar
  61. 61.
    Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1(2):180–192CrossRefGoogle Scholar
  62. 62.
    Kim W, Javey A, Vermesh O, Wang Q, Li YM, Dai HJ (2003) Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett 3(2):193–198CrossRefGoogle Scholar
  63. 63.
    Yuan SN, Zhang Q, Shimamoto D, Muramatsu H, Hayashi T, Kim Y, Endo M (2007) Hysteretic transfer characteristics of double-walled and single-walled carbon nanotube field-effect transistors. Appl Phys Lett 91:143118CrossRefGoogle Scholar
  64. 64.
    Fan Y, Burghard M, Kern K (2002) Chemical defect decoration of carbon nanotubes. Adv Mater 14:130–133CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Printable Electronics Research Centre, Suzhou Institute of Nanotech and Nano-bionicsChinese Academy of SciencesSuzhouPeople’s Republic of China
  2. 2.Institute of SemiconductorsChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations