Skip to main content
Log in

Lanthanum oxide nanostructured films synthesized using hot dense and extremely non-equilibrium plasma for nanoelectronic device applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current–voltage and capacitance–voltage (CV) characteristics of the Al–La2O3–Si metal–oxide–semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The CV characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wong H, Iwai H (2006) On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron Eng 83:1867–1904

    Article  CAS  Google Scholar 

  2. Sun CQ (2003) Oxidation electronics: bond–band–barrier correlation and its applications. Prog Mater Sci 48:521–685

    Article  CAS  Google Scholar 

  3. Kish LB (2004) Moore’s law and the energy requirement of computing versus performance. IEE Proc Circuits Devices Syst 151:190–194

    Article  Google Scholar 

  4. Shauly EN (2012) CMOS leakage and power reduction in transistors and circuits: process and layout considerations. J Low Power Electron Appl 2:1–29

    Article  Google Scholar 

  5. Kamata Y (2008) High-κ/Ge MOSFETs for future nanoelectronics. Mater Today 11:30–38

    Article  Google Scholar 

  6. Han JW, Meyyappan M (2011) Copper oxide transistor on copper wire for e-textile. Appl Phys Lett 98:192102-1–192102-3

    ADS  Google Scholar 

  7. Filipic G, Cvelbar U (2012) Copper oxide nanowires: a review of growth. Nanotechnology 23:194001-1–194001-16

    Article  ADS  Google Scholar 

  8. Lee BH, Kang L, Nieh R, Qi W-J, Lee JC (2000) Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Appl Phys Lett 76:1926–1928

    Article  CAS  ADS  Google Scholar 

  9. Ngai T, Qi WJ, Sharma R, Fretwell J, Chen X, Lee JC, Banerjee S (2000) Electrical properties of ZrO2 gate dielectric on SiGe. Appl Phys Lett 76:502–504

    Article  CAS  ADS  Google Scholar 

  10. Alers GB, Werder DJ, Chabal Y, Lu HC, Gusev EP, Garfunkel E, Gustafsson T, Urdahl RS (1998) Intermixing at the tantalum oxide/silicon interface in gate dielectric structures. Appl Phys Lett 73:1517–1519

    Article  CAS  ADS  Google Scholar 

  11. Blasco X, Porti M, Nafria M, Aymerich X, Petry J, Vandervorst W (2005) Electrical characterization of high-dielectric-constant/SiO2 metal–oxide–semiconductor gate stacks by a conductive atomic force microscope. Nanotechnology 16:1506–1511

    Article  CAS  Google Scholar 

  12. Chakraborty G, Sarkar CK, Lu XB, Dai JY (2008) Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures. Nanotechnology 19:255401-1–255401-7

    Article  ADS  Google Scholar 

  13. Ramirez JM, Lupi FF, Jambois O, Berencen Y, Navarro-Urrios D, Anopchenko A, Marconi A, Prtljaga N, Tengattini A, Pavesi L, Colonna JP, Fedeli JM, Garrido B (2012) Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation. Nanotechnology 23:125203-1–125203-8

    Article  ADS  Google Scholar 

  14. He G, Sun ZQ, Ma YQ, Wu MZ, Liu YM, Shi SW, Li G, Chen XS, Zhang LD, Fang ZB (2011) Composition dependence of interface control and optimization on the performance of an HfTiON gate dielectric metal–oxide–semiconductor capacitor. Semicond Sci Technol 26:105019-1–105019-8

    ADS  Google Scholar 

  15. Capodieci V, Wiest F, Sulima T, Schulze J, Eisele I (2005) Examination and evaluation of La2O3 as gate dielectric for sub-100 nm CMOS and DRAM technology. Microelectron Reliab 45:937–940

    Article  CAS  Google Scholar 

  16. Jo SJ, Ha JS, Park NK, Kang DK, Kim B-H (2006) 5 nm thick lanthanum oxide thin films grown on Si (100) by atomic layer deposition: the effect of post-annealing on the electrical properties. Thin Solid Films 513:253–257

    Article  CAS  ADS  Google Scholar 

  17. Zade D, Sato S, Kakushima K, Srivastava A, Ahmet P, Tsutsui K, Nishiyama A, Sugii N, Natori K, Hattori T, Sarkar CK, Iwai H (2011) Effects of La2O3 incorporation in HfO2 gated nMOSFETs on low-frequency noise. Microelectron Reliab 51:746–750

    Article  CAS  Google Scholar 

  18. Mamatrishat M, Kubota T, Seki T, Kakushima K, Ahmet P, Tsutsui K, Kataoka Y, Nishiyama A, Sugii N, Natori K, Hattori T, Iwai H (2012) Oxide and interface trap densities estimation in ultrathin W/La2O3/Si MOS capacitors. Microelectron Reliab 52:1039–1042

    Article  CAS  Google Scholar 

  19. Pisecny P, Husekova K, Frohlich K, Harmatha L, Soltys J, Machajdik D, Espinos JP, Jergel M, Jakabovic J (2004) Growth of lanthanum oxide films for application as a gate dielectric in CMOS technology. Mater Sci Semicond Process 7:231–236

    Article  CAS  Google Scholar 

  20. Chiu F-C, Chou H-W, Lee JY-M (2005) Electrical conduction mechanisms of metal/La2O3/Si structure. J Appl Phys 97:103503-1–103503-5

    ADS  Google Scholar 

  21. Anders A (ed) (2000) Handbook of plasma immersion ion implantation and deposition. Wiley, New York

    Google Scholar 

  22. Anders A (2002) From plasma immersion ion implantation to deposition: a historical perspective on principles and trends. Surf Coat Technol 156:3–12

    Article  CAS  Google Scholar 

  23. Pelletier J, Anders A (2005) Plasma-based ion implantation and deposition: a review of physics, technology, and applications. IEEE Trans Plasma Sci 33:1944–1959

    Article  CAS  ADS  Google Scholar 

  24. Rawat RS (2012) High energy density pulsed plasmas in plasma focus: novel plasma processing tool for nanophase hard magnetic material synthesis. Nanosci Nanotechnol Lett A 4:251–274

    Article  CAS  Google Scholar 

  25. Malhotra Y, Roy S, Srivastava MP, Kant CR, Ostrikov K (2009) Extremely non-equilibrium synthesis of luminescent zinc oxide nanoparticles through energetic ion condensation in a dense plasma focus device. J Phys D 42:155202-1–155202-7

    ADS  Google Scholar 

  26. Mangla O, Srivastava MP (2013) GaN nanostructures by hot dense and extremely non-equilibrium plasma and their characterizations. J Mater Sci 48:304–310. doi:10.1007/s10853-012-6746-y

    Article  CAS  ADS  Google Scholar 

  27. Srivastava A, Nahar RK, Sarkar CK, Singh WP, Malhotra Y (2011) Study of hafnium oxide deposited using dense plasma focus machine for film structure and electrical properties as a MOS device. Microelectron Reliab 51:751–755

    Article  CAS  Google Scholar 

  28. Ostrikov K, Neyts EC, Meyyappan M (2013) Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids. Adv Phys 62:113–224

    Article  CAS  Google Scholar 

  29. Mather JW (1964) Investigation of the high energy acceleration mode in the coaxial gun. Phys Fluids 7:S28–S34

    Article  ADS  Google Scholar 

  30. Rawat RS, Srivastava MP, Tandon S, Mansingh A (1993) Crystallization of an amorphous lead zirconate titanate thin film with a dense-plasma-focus device. Phys Rev B 47:4858–4862

    Article  CAS  ADS  Google Scholar 

  31. International Technology Roadmap for Semiconductors (2011), Semiconductor Industry Association

  32. Ostrikov K, Levchenko I, Cvelbar U, Sunkara M, Mozetic M (2010) From nucleation to nanowires: a single-step process in reactive plasmas. Nanoscale 2:2012–2027

    Article  PubMed  CAS  ADS  Google Scholar 

  33. Soh LY, Lee P, Shuyan X, Lee S, Rawat RS (2004) Shadowgraphic studies of DLC film deposition process in dense plasma focus device. IEEE Trans Plasma Sci 32:448–455

    Article  CAS  ADS  Google Scholar 

  34. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705-1–013705-8

    ADS  Google Scholar 

  35. Jun J-H, Wang C-H, Won D-J, Choi DJ (2002) Structural and electrical properties of a La2O3 thin film as a gate dielectric. J Korean Phys Soc 41:998–1002

    CAS  Google Scholar 

  36. Jun J-H, Choi DJ, Kim KH, Oh KY, Hwang CJ (2003) Effect of structural properties on electrical properties of lanthanum oxide thin film as a gate dielectric. Jpn J Appl Phys 42:3519–3522

    Article  CAS  ADS  Google Scholar 

  37. Wu YH, Yang MY, Chin A, Chen WJ, Kwei CM (2000) Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Ǻ. IEEE Elect Device Lett 21:341–343

    Article  CAS  MATH  ADS  Google Scholar 

  38. Wong H, Yang BL, Kakushima K, Ahmet P, Iwai H (2012) Effects of aluminium doping on lanthanum oxide gate dielectric films. Vacuum 86:929–932

    Article  CAS  Google Scholar 

  39. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York

    Google Scholar 

  40. Chang IY-K, Lee JY-M (2008) Temperature dependence of the current conduction mechanisms in LaAlO3 thin films. Appl Phys Lett 93:223503-1–223503-3

    ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (OM) is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial assistance in term of award of Senior Research Fellowship (NET). The authors would like to thank Prof. M. P. Srivastava, Physics Department, Delhi University for experimental support to deposit La2O3 gate dielectric using dense plasma focus device. The authors would also like to thank Prof. V. R. Rao, Electrical Engineering Department, Indian Institute of Technology, Bombay, for useful comments, suggestion, and experimental support to do electrical characterization under the INUP Project. This work was also partially supported by the Australian Research Council and CSIRO’s OCE Science Leadership Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangla, O., Srivastava, A., Malhotra, Y. et al. Lanthanum oxide nanostructured films synthesized using hot dense and extremely non-equilibrium plasma for nanoelectronic device applications. J Mater Sci 49, 1594–1605 (2014). https://doi.org/10.1007/s10853-013-7842-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7842-3

Keywords

Navigation