Advertisement

Journal of Materials Science

, Volume 49, Issue 4, pp 1566–1573 | Cite as

Proton conductivity of Nafion/ex situ Stöber silica nanocomposite membranes as a function of silica particle size and temperature

  • Beatrice Muriithi
  • Douglas A. Loy
Article

Abstract

In the first systematic study of the influence of the size of silica particles on ion exchange capacity (IEC) and proton conductivity of Nafion–silica nanocomposite membranes, thin films cast from mixtures of silica particles (5 wt%) with varying diameters ranging from 10 to 400 nm and Nafion in alcohol were examined. IECs decreased exactly as expected with the dilution of Nafion and its sulfonic acid groups with added silica. At 80 °C, the proton conductivity was also less with silica particles. However, at higher temperatures (120 °C), there was a 58 % improvement in proton conductivity at low relative humidity and a 45 % improvement at higher relative humidity for nanocomposite membranes prepared with silica particles <50 nm in size. The improvement was less significant with larger silica particles in the membranes.

Keywords

Methyl Orange Silica Particle Proton Conductivity Composite Membrane Nafion Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Thanks to the Dr. Brook Beam and the Keck Center for Nano-Scale Imaging at the University of Arizona for assistance with AFM and electron microscopy.

Supplementary material

10853_2013_7839_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1105 kb)

References

  1. 1.
    Deng Q, Jarrett W, Moore RB, Mauritz KA (1996) Novel nafion(R)/ORMOSIL hybrids via in situ sol-gel-reactions.2. Probe of ORMOSIL phase nanostructure by Si-29 solid state NMR spectroscopy. J Sol-Gel Sci Technol 7:177CrossRefGoogle Scholar
  2. 2.
    Young SK, Jarrett WL, Mauritz KA (2001) Studies of the aging of Nafion (R)/silicate nanocomposites using Si-29 solid state NMR spectroscopy. Polym Eng Sci 41:1529–1539CrossRefGoogle Scholar
  3. 3.
    Mauritz KA, Hassan MK (2007) Nanophase separated perfluorinated ionomers as sol-gel polymerization templates for functional inorganic oxide nanoparticles. Polym Rev 47:543–565CrossRefGoogle Scholar
  4. 4.
    Yuan J, Zhou Guangbin, Pu Hongting (2008) Preparation and properties of Nafion®/hollow silica spheres composite membranes. J Membr Sci 325:742–748CrossRefGoogle Scholar
  5. 5.
    Pereira F, Valle K, Belleville P, Morin A, Lambert S, Sanchez C (2008) Advanced mesostructured hybrid silica-nafion membranes for high-performance PEM fuel cell. Chem Mater 20:1710–1718CrossRefGoogle Scholar
  6. 6.
    Yu J, Pan M, Yuan RZ (2007) Nafion/silicon oxide composite membrane for high temperature proton exchange membrane fuel cell. J Wuhan Univ Technol 22:478–481. doi: 10.1007/S11595-006-3478-3 CrossRefGoogle Scholar
  7. 7.
    Zeng R, Wang Y, Wang SL, Shen PK (2007) Homogeneous synthesis of PFSI/silica composite membranes for PEMFC operating at low humidity. Electrochim Acta 52:3895–3900. doi: 10.1016/J.Electacta.2006.11.013 CrossRefGoogle Scholar
  8. 8.
    Yen CY, Lee CH, Lin YF, Lin HL, Hsiao YH, Liao SH, Chuang CY, Ma CCMJ (2007) Sol–gel derived sulfonated-silica/Nafion (R) composite membrane for direct methanol fuel cell. Power Sources 173:36–44. doi: 10.1016/J.Jpowsour.2007.08.017 CrossRefGoogle Scholar
  9. 9.
    Ke C-C, Li Xiao-Jin, Qu Shu-Guo, Shao Zhi-Gang, Yi Bao-Lian (2012) Preparation and properties of Nafion/SiO2 composite membrane derived via in situ sol–gel reaction: size controlling and size effects of SiO2 nano-particles. Polym Advan Technol 23:92–98CrossRefGoogle Scholar
  10. 10.
    Dimitrova P, Friedrich KA, Vogt B, Stimming U (2002) Transport properties of ionomer composite membranes for direct methanol fuel cells. J Electroanal Chem 532:75–83CrossRefGoogle Scholar
  11. 11.
    Miyake N, Wainright JS, Savinell RF (2001) Evaluation of a sol-gel derived Nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications—I. Proton conductivity and water content. J Electrochem Soc 148:A898–A904CrossRefGoogle Scholar
  12. 12.
    Jiang RC, Kunz HR, Fenton JM (2006) Composite silica/Nafion (R) membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells. Membr Sci 272:116–124. doi: 10.1016/J.Memsci.2005.07.026 CrossRefGoogle Scholar
  13. 13.
    Alberti G, Casciola M (2003) Composite membranes for mediun-tempreature fuel cells. Annual Rev Mater Res 33:129–154CrossRefADSGoogle Scholar
  14. 14.
    Mauritz KA, Payne JT (2000) [Perfluorosulfonate ionomer]/silicate hybrid membranes via base-catalyzed in situ sol-gel processes for tetraethylorthosilicate. Membr Sci 168:39–51CrossRefGoogle Scholar
  15. 15.
    Ye G, Hayden CA, Goward GR (2007) Proton dynamics of nafion and Nafion/SiO2 composites by solid state NMR and pulse field gradient NMR. Macromolecules 40:1529–1537CrossRefADSGoogle Scholar
  16. 16.
    Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  17. 17.
    Muriithi B, Loy DA (2012) Processing, morphology, and water uptake of nafion/ex situ stober silica nanocomposite membranes as a function of particle size. Acs Appl Mater Inter 4:6765–6773. doi: 10.1021/Am301931e Google Scholar
  18. 18.
    Adjemian KT, Dominey R, Krishnan L, Ota H, Majsztrik P, Zhang T, Mann J, Kirby B, Gatto L, Velo-Simpson M, Leahy J, Srinivasant S, Benziger JB, Bocarsly AB (2006) Function and characterization of metal oxide-naflon composite membranes for elevated-temperature H-2/O-2 PEM fuel cells. Chem Mater 18:2238–2248CrossRefGoogle Scholar
  19. 19.
    Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. Membr Sci 237:145–161CrossRefGoogle Scholar
  20. 20.
    Chandra A, Tuckerman ME, Marx D (2007) Connecting solvation shell structure to proton transport kinetics in hydrogen-bonded networks via population correlation functions. Phys Rev Lett 99:4–145901Google Scholar
  21. 21.
    Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:85–4535Google Scholar
  22. 22.
    Chaabane L, Dammak L, Nikonenko VV, Bulvestre G, Auclair B (2007) The influence of absorbed methanol on the conductivity and on the microstructure of ion-exchange membranes. Membr Sci 298:126–135. doi: 10.1016/J.Memsci.2007.04.010 CrossRefGoogle Scholar
  23. 23.
    Ong SW, Zhao XL, Eisenthal KB (1992) Polarization of water-molecules at a charged interface—2nd harmonic studies of the silica water interface. Chem Phys Lett 191:327–335. doi: 10.1016/0009-2614(92)85309-X CrossRefADSGoogle Scholar
  24. 24.
    Luduena GA, Kuhne TD, Sebastiani D (2011) Mixed grotthuss and vehicle transport mechanism in proton conducting polymers from ab initio molecular dynamics simulations. Chem Mater 23:1424–1429. doi: 10.1021/Cm102674u CrossRefGoogle Scholar
  25. 25.
    Kreuer KD, Rabenau A, Weppner W (1982) Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew Chem Int Ed 21:208–209CrossRefGoogle Scholar
  26. 26.
    Mauritz KA (1998) Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides. Mat Sci Eng C-Bio S 6:121–133CrossRefGoogle Scholar
  27. 27.
    Baradie B, Dodelet JP, Guay D (2000) Hybrid Nafion (R)-inorganic membrane with potential applications for polymer electrolyte fuel cells. J Electroanal Chem 489:101–105CrossRefGoogle Scholar
  28. 28.
    Osborn SJ, Hassan MK, Divoux GM, Rhoades DW, Mauritz KA, Moore RB (2007) Glass transition temperature of perfluorosulfonic acid ionomers. Macromolecules 40:3886–3890CrossRefADSGoogle Scholar
  29. 29.
    Tadano K, Hirasawa E, Yamamoto H, Yano S (1989) Order-disorder transition of ionic clusters in ionomers. Macromolecules 22:226–233CrossRefADSGoogle Scholar
  30. 30.
    Su S, Mauritz KA (1994) Dielectric-relaxation studies of annealed short side-chain perfluorosulfonate ionomers. Macromolecules 27:2079CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of ArizonaTucsonUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of ArizonaTucsonUSA
  3. 3.Waters CorporationMilfordUSA

Personalised recommendations