Skip to main content
Log in

Structural changes in polytetrafluoroethylene molecular chains upon sliding against steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the influence of dry sliding between a steel counterpart ball and polytetrafluoroethylene (PTFE) plate sample on the transformation of PTFE molecular structure is investigated. With X-ray diffraction, differential scanning calorimetry, Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy, the crystallinity of PTFE wear debris is revealed to be higher than that of the original PTFE sample due to shear-induced ordering during sliding. The different morphologies of the PTFE transfer film from the original PTFE, and the wear debris observed with SEM suggests that some properties have been changed in the transfer film. According to FT-IR analysis, part of the PTFE chains in the wear debris and transfer film has a conformational change into a planar-zigzag conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Makinson KR, Tabor D (1964) The friction and transfer of polytetrafluoroethylene. Proc R Soc A 281:49–61

    Article  CAS  ADS  Google Scholar 

  2. Yang EL (1992) Effect of crystalline and amorphous phases on the transfer of polytetrafluoroethylene (PTFE) onto metallic substrates. J Mater Res 7:3139–3149

    Article  CAS  ADS  Google Scholar 

  3. Oshima A, Ikeda S, Kudoh H et al (1997) Temperature effects on radiation induced phenomena in polytetrafluoroethylene (PTFE)—change of G-value. Radiat Phys Chem 50:611–615

    Article  CAS  ADS  Google Scholar 

  4. Khedkar J, Negulescu I, Meletis EI (2002) Sliding wear behavior of PTFE composites. Wear 252:361–369

    Article  CAS  Google Scholar 

  5. Biswas SK, Vijayan K (1988) Changes to near-surface region of PTFE during dry sliding against steel. J Mater Sci 23:1877–1885. doi:10.1007/BF01115734

    Article  CAS  ADS  Google Scholar 

  6. Rabolt JF, Piermarini G, Block S (1978) Raman spectroscopic evidence for conformational deformation in the high pressure phase of polytetrafluoroethylene. J Chem Phys 69:2872–2876

    Article  CAS  ADS  Google Scholar 

  7. Brown EN, Dattelbaum DM, Brown DW et al (2007) A new strain path to inducing phase transitions in semi-crystalline polymers. Polymer 48:2531–2536

    Article  CAS  Google Scholar 

  8. Liu T, Rhee S, Lawson KL (1980) A study of wear rates and transfer films of friction materials. Wear 60:1–12

    Article  CAS  Google Scholar 

  9. Pepper SV (1974) Auger analysis of films formed on metals in sliding contact with halogenated polymers. J Appl Phys 45:2947–2956

    Article  CAS  ADS  Google Scholar 

  10. Wheeler D (1980) Polytetrafluoroethylene transfer film studied with X-ray photoelectron spectroscopy. NASA Tech Pap 1728

  11. Smurugov VA, Senatrev AI, Savkin VG et al (1992) On PTFE transfer and thermoactivation mechanism of wear. Wear 158:61–69

    Article  CAS  Google Scholar 

  12. Dougherty PSM, Pudjoprawoto R, Higgs CF III (2011) An investigation of the wear mechanism leading to self-replenishing transfer films. Wear 272:122–132

    Article  CAS  Google Scholar 

  13. Ścigała R, Wlochowicz A (1989) Crystallinity of poly (tetrafluoroethylene). Acta Polym 40:15–19

    Article  Google Scholar 

  14. Slade PE Jr, Jenkins LT (1970) Thermal characterization techniques. Marcel Dekker, New York

    Google Scholar 

  15. Higgs PW (1953) The vibration spectra of helical molecules: infra-red and Raman selection rules, intensities and approximate frequencies. Proc R Soc Lond. (A) 220:472–485

    Article  CAS  MATH  ADS  Google Scholar 

  16. Lehnert RJ, Hendra PJ, Everall N, Clayden NJ (1997) Compare quantitative study on the crystallinity of poly(tetrafluoroethylene) including Raman, infra-red and 19F nuclear magnetic resonance spectroscopy. Polymer 38:1521–1535

    Article  CAS  Google Scholar 

  17. Starkweather HW Jr (1979) A comparison of the rheological properties of polytetrafluoroethylene below its melting point with certain low-molecular smectic states. J Polym Sci Polym Phys 17:73–79

    Article  CAS  Google Scholar 

  18. Liang CY, Krimm S (1956) Infrared spectra of high polymers. III. Polytetrafluoroethylene and polychlorotrifluoroethylene. J Chem Phys 25:563–571

    Article  CAS  ADS  Google Scholar 

  19. Masetti G, Cabassi F, Morelli G, Zerbi G (1973) Conformational order and disorder in poly(tetrafluoroethylene) from the infrared spectrum. Macromolecules 6:700–707

    Article  CAS  ADS  Google Scholar 

  20. Peacock CJ, Hendra PJ, Willis HA, Cudby MEA (1970) Raman spectrum and vibrational assignment for poly(tetrafluoroethylene). J Chem Soc A 1970:2943–2947

  21. Koenig JL, Boerio FJ (1969) Raman scattering and band assignments in polytetrafluoroethylene. J Chem Phys 50:2823–2829

    Article  CAS  ADS  Google Scholar 

  22. Rabolt JF, Fanconi B (1978) Raman scattering from finite polytetrafluoroethylene chains and a highly oriented TFE-HFP copolymer monofilament. Macromolecules 11:740–745

    Article  CAS  ADS  Google Scholar 

  23. Shen JT, Pei YT, De Hosson JTM (2013) Tribological behavior of TiC/a-C:H coated and uncoated steels sliding against phenol-formaldehyde composite reinforced with PTFE and glass fibers. Tribol Lett 52:123–135

    Google Scholar 

  24. Vleeshouwers S, Meijer HEH (1996) A rheological study of shear induced crystallization. Rheol Acta 35:391–399

    Article  CAS  Google Scholar 

  25. Acierno S, Palomba B, Winter HH, Grizzuti N (2003) Effect of molecular weight on the flow-induced crystallization of isotactic poly(1-butene). Rheol Acta 42:243–250

    CAS  Google Scholar 

  26. Li LB, de Jeu WH (2004) Shear-induced crystallization of poly(butylene terephthalate): a real-time small-angle X-ray scattering study. Macromolecules 37:5646–5652

    Article  CAS  ADS  Google Scholar 

  27. Bunn CW, Cobbold AJ, Palmer RP (1958) The fine structure of polytetrafluoroethylene. J Polym Sci 28:365–376

    Article  CAS  ADS  Google Scholar 

  28. Speerschneider CJ, Li CH (1962) Some observations on the structure of polytetrafluoroethylene. J Appl Phys 33:1871–1875

    Article  CAS  ADS  Google Scholar 

  29. Piseri L, Powell BM, Dolling G (1973) Lattice dynamics of polytetrafluoroethylene. J Chem Phys 58:158–171

    Article  CAS  ADS  Google Scholar 

  30. Akavoor P, Menezes W, Kesmodel LL et al (1996) High-resolution electron energy loss spectroscopy and infrared spectroscopy of polymer surfaces: high-resolution and orientation effects of polytetrafluoroethylene films. J Vac Sci Technol A 14:95–103

    Article  CAS  ADS  Google Scholar 

  31. Wool RP (1975) Mechanisms of frequency shifting in the infrared spectrum of stressed polymer. J Polym Sci Polym Phys 13:1795–1808

    Article  CAS  Google Scholar 

  32. Wu CK, Nicol M (1973) Raman spectra of high pressure phase and phase transition of polytetrafluoroethylene (Teflon). Chem Phys Lett 21:153–157

    Article  CAS  ADS  Google Scholar 

  33. Gubanov AI, Kosobukin VA (1976) Effect of certain factors on the vibrations of polymers. Mekhanika Polimerov 11:27–39

    Google Scholar 

  34. Bretzlaff RS, Wool RP (1983) Frequency shifting and asymmetry in infrared bands of stressed polymers. Macromolecules 16:1907–1917

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This research was carried out under the project number M21.7.11422 in the framework of the research program of the Materials innovation institute M2i, Delft, the Netherlands. Financial support from M2i is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. T. Pei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J.T., Pei, Y.T. & De Hosson, J.T.M. Structural changes in polytetrafluoroethylene molecular chains upon sliding against steel. J Mater Sci 49, 1484–1493 (2014). https://doi.org/10.1007/s10853-013-7829-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7829-0

Keywords

Navigation