Advertisement

Journal of Materials Science

, Volume 49, Issue 3, pp 1368–1375 | Cite as

Microstructure and properties of Sip/Al–20 wt% Si composite prepared by hot-pressed sintering technology

  • Jun Liu
  • Ziyang Xiu
  • Xue Liang
  • Qiang Li
  • Murid Hussain
  • Jing Qiao
  • Longtao Jiang
Article

Abstract

In the present work, 50 vol% Sip/Al–20Si composite was prepared by hot-pressed sintering technology. Si particles were uniformly distributed in the Sip/Al–20Si composite, and only the presence of Si and Al phases were detected by XRD analysis. Dislocations, twins, and stacking faults were found in the Si particles. Several Si phases were found to be precipitated between Al matrix and Si particles. Si/Al interface was clean, smooth, and free from interfacial product. HRTEM indicated that the Si/Al interface was well bonded. The average CTE and thermal conductivity (TC) of Sip/Al–20Si composite were 11.7 × 10−6/°C and 118 W/(m K), respectively. Sip/Al–20Si composite also demonstrated high mechanical properties (bending strength of 386 MPa). Thus, the comprehensive performance (low density and CTE, high TC, and mechanical properties) makes the Sip/Al–20Si composite very attractive for application in electron packaging.

Keywords

Crystal Defect Eutectic Silicon Thermal Expansion Behavior Interfacial Product Particle Reinforce Metal Matrix Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Project (AWJ-M13-15) was supported by the Open-Fund Research of State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China.

References

  1. 1.
    Zhang QG, Qiu JX, Wang Y, Gu MY (2007) Studies on machinability of Al/Sip + SiCp composite materials. J Mater Sci 42:5845–5850. doi: 10.1007/s10853-006-0851-8 CrossRefADSGoogle Scholar
  2. 2.
    Yan YW, Geng L (2007) Effects of particle size on the thermal expansion behavior SiCp/Al composites. J Mater Sci 42:6433–6438. doi: 10.1007/s10853-006-1200-7 MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Chen P, Luo G, Shen Q, Li M, Zhang L (2013) Thermal and electrical properties of W–Cu composite produced by activated sintering. Mater Des 46:101–105CrossRefGoogle Scholar
  4. 4.
    Xiu ZY, Chen GQ, Wang M, Hussain M (2013) Effect of TiN coating on microstructure of Tif/Al composite. Micron 45:92–96PubMedCrossRefGoogle Scholar
  5. 5.
    Wu Y, Wang ML, Chen Z, Ma NH, Wang HW (2013) The effect of phase transformation on the thermal expansion property in Al/ZrW2O8 composites. J Mater Sci 48:2928–2933. doi: 10.1007/s10853-012-6933-x CrossRefADSGoogle Scholar
  6. 6.
    Tan Z, Li Z, Fan GQ, Kai X, Ji G, Zhang L, Zhang D (2013) Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Mater Des 47:160–166CrossRefGoogle Scholar
  7. 7.
    Leng JF, Jiang LT, Zhang Q, Wu GH, Sun DL, Zhou QB (2008) Study of machinable SiC/Gr/Al composites. J Mater Sci 43:6495–6499. doi: 10.1007/s10853-008-2974-6 CrossRefADSGoogle Scholar
  8. 8.
    Freitas N, Pianaro SA, Tebcherani SM, Nadal FN, Berg EAT (2009) Preparation and characterization of composite materials obtained by pressure infiltration of aluminum in sintered SiC/kaolin performs. J Mater Sci 44:5662–5672. doi: 10.1007/s10853-009-3798-8 CrossRefADSGoogle Scholar
  9. 9.
    Li W, Chen ZH, Chen D, Teng J, Li CH (2011) Understanding the influence of particle size on strain versus fatigue life and fracture behavior of aluminum alloy composites produced by spray deposition. J Mater Sci 46:1153–1160. doi: 10.1007/s10853-010-4885-6 CrossRefADSGoogle Scholar
  10. 10.
    Wu J, Zhang H, Zhang Y, Li J, Wang X (2012) Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites. Mater Des 39:87–92CrossRefADSGoogle Scholar
  11. 11.
    Tan Z, Li Z, Fan G, Kai X, Ji G, Zhang L, Zhang D (2013) Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties. Compos B 47:173–180CrossRefGoogle Scholar
  12. 12.
    Choi H, Li XC (2012) Refinement of primary Si and modification of eutectic Si for enhanced ductility of hypereutectic Al–20Si–4.5Cu alloy with addition of Al2O3 nanoparticles. J Mater Sci 47:3096–3102. doi: 10.1007/s10853-011-6143-y CrossRefADSGoogle Scholar
  13. 13.
    Wang SR, Wang YZ, Wang Y, Geng HR, Chi Q (2007) Microstructure and infiltration kinetics of Si3N4/Al–Mg composites fabricated by pressureless infiltration. J Mater Sci 42:7812–7818. doi: 10.1007/s10853-007-1591-0 CrossRefADSGoogle Scholar
  14. 14.
    Alireza HA, Ajersch F, Chen XG (2011) Microstructure modification of Al–17%Si alloy by addition of Mg. J Mater Sci 46:2370–2378. doi: 10.1007/s10853-010-5084-1 CrossRefADSGoogle Scholar
  15. 15.
    Cui CS, Schulz A, Matthaei-Schulz E, Zoch HW (2009) Characterization of silicon phases in spray-formed and extruded hypereutectic Al–Si alloys by image analysis. J Mater Sci 44:4814–4826. doi: 10.1007/s10853-009-3734-y CrossRefADSGoogle Scholar
  16. 16.
    Chien CW, Lee SL, Lin JC, Jahn MT (2002) Effects of Sip size and volume fraction on properties of Al/Sip composites. Mater Lett 52:334–341CrossRefGoogle Scholar
  17. 17.
    Xiu Z, Deng Z, Wang X, Wu GH (2009) Mechanism and microstructure transformation of 3D-Si/LG5 composites by high temperature diffusion treatment. Int J Mod Phys B 23:1473–1478CrossRefADSGoogle Scholar
  18. 18.
    Xiu ZY, Chen GQ, Yang WS, Song MH, Wu GH (2009) Microstructure and thermal properties of recyclable Sip/1199Al composites. Trans Nonferrous Metal Soc 19:1440–1443CrossRefGoogle Scholar
  19. 19.
    Zhang Q, Zhang H, Gu M, Jin Y (2004) Studies on the fracture and flexural strength of Al/Sip composite. Mater Lett 58:3545–3550CrossRefGoogle Scholar
  20. 20.
    Zhang Q, Gu M (2006) Studies on properties of Al–Sip composites fabricated by vacuum pressure infiltration method. J Compos Mater 40:5471–5478MathSciNetGoogle Scholar
  21. 21.
    Cui C, Schulz A, Epp J, Zoch HW (2010) Deformation behavior of spray-formed hypereutectic Al–Si alloys. J Mater Sci 45:2798–2807. doi: 10.1007/s10853-010-4269-y CrossRefADSGoogle Scholar
  22. 22.
    Wang F, Xiong B, Zhang Y, Zhu B, Liu H, Wei Y (2008) Microstructure, thermo-physical and mechanical properties of spray-deposited Si–30Al alloy for electronic packaging application. Mater Charact 59:1455–1457CrossRefGoogle Scholar
  23. 23.
    Zhang L, Gan GS, Yang B (2012) Microstructure and property measurements on in situ TiB2/70Si–Al composite for electronic packaging applications. Mater Des 36:177–181CrossRefGoogle Scholar
  24. 24.
    Yu JH, Wang CB, Shen Q, Zhang LM (2012) Preparation and properties of Sip/Al composites by spark plasma sintering. Mater Des 41:198–202CrossRefGoogle Scholar
  25. 25.
    Lee IS, Hsu CJ, Chen CF, Ho NJ, Kao PW (2011) Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing. Compos Sci Technol 71:693–698CrossRefGoogle Scholar
  26. 26.
    Chien CW, Lee SL, Lin JC (2003) Processing and properties of high volume fraction aluminium/silicon composites. Mater Sci Technol Lond 19:1231–1234CrossRefGoogle Scholar
  27. 27.
    Xu CL, Jiang QC (2006) Morphologies of primary silicon in hypereutectic Al–Si alloys with melt overheating temperature and cooling rate. Mater Sci Eng A 437:451–455CrossRefGoogle Scholar
  28. 28.
    Shi WX, Gao B, Tu GF, Li SW (2010) Effect of Nd on microstructure and wear resistance of hypereutectic Al–20%Si alloy. J Alloys Compd 508:480–485CrossRefGoogle Scholar
  29. 29.
    Han K, Hirth JP, Embury JD (2001) Modeling the formation of twins and stacking faults in the Ag–Cu system. Acta Mater 49:1537–1540CrossRefGoogle Scholar
  30. 30.
    Narayana J (1990) Dislocations, twins, and grain boundaries in CVD diamond thin films: atomic structure and properties. J Mater Res 5:2414–2423CrossRefADSGoogle Scholar
  31. 31.
    Nishida M (1978) Application of molecular orbital method to crystalline solids: calculation of the electronic energy bands of diamond-type crystals. J Chem Phys 69:956–962CrossRefADSGoogle Scholar
  32. 32.
    Zandvliet HJW (2000) Energetics of Si(001). Rev Mod Phys 72:593–602CrossRefADSGoogle Scholar
  33. 33.
    Lu M, Li MK, Kong LB, Guo XY, Li HL (2003) Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties. Chem Phys Lett 374:542–547CrossRefADSGoogle Scholar
  34. 34.
    Cao JX, Gong XG, Wu RQ (2007) Giant piezoresistance and its origin in Si(111) nanowires: first-principles calculations. Phys Rev B 75:233302-1–233302-4ADSGoogle Scholar
  35. 35.
    de Araújo MM, Nunes RW (2008) Order-N study of the structure and energetics of stacking faults in silicon. Comput Mater Sci 41:602–606CrossRefGoogle Scholar
  36. 36.
    Feldmann G, Fabrim ZE, Hennig GL (2008) Ostwald ripening of precipitates and self similarity of size distributions in reaction controlled growth. J Mater Sci 43:614–620. doi: 10.1007/s10853-007-1760-1 CrossRefADSGoogle Scholar
  37. 37.
    Baldan A (2002) Review progress in Ostwald ripening theories and their applications to nickel-base superalloys. Part I. Ostwald ripening theories. J Mater Sci 37:2171–2202. doi: 10.1023/A:1015388912729 CrossRefADSGoogle Scholar
  38. 38.
    Greenwood GW (1956) The growth of dispersed precipitates in solutions. Acta Metall 4:243–248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jun Liu
    • 1
  • Ziyang Xiu
    • 1
  • Xue Liang
    • 2
  • Qiang Li
    • 2
  • Murid Hussain
    • 3
  • Jing Qiao
    • 1
  • Longtao Jiang
    • 1
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Laboratory for MicrostructuresShanghai UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Chemical EngineeringCOMSATS Institute of Information TechnologyLahorePakistan

Personalised recommendations