Journal of Materials Science

, Volume 49, Issue 3, pp 1353–1358 | Cite as

Effects of annealing ambient on the photoluminescence properties of Si-rich oxide/SiO2 multilayer films containing Si-nanocrystals



In this study, Si-nanocrystals (Si-NCs) have been prepared by annealing Si-rich oxide (SRO)/SiO2 multilayer films in Ar and N2, and the effects of annealing ambient on the photoluminescence (PL) properties are studied. XPS results show that the chemical compositions for the SRO and SiO2 layers are SiO1.1 and SiO2, respectively. FTIR results show that phase separation between Si and SiO2 occurs after annealing treatment, and Si-NCs are obtained which have been proved by the TEM images. Large and high density Si-NCs are obtained in the Ar-annealed film, and high structural disorder exists at the interface of Si-NCs. Compared with the film annealed in N2, a 2.4 times PL enhancement is obtained for the Ar-annealed sample, and the PL peak shifts toward low energy. Two lifetime distribution bands are obtained by fitting the time-resolved PL spectra, and the proportion of slow PL decay component increases from 69.7 to 84.0 %. The PL intensity for the Ar-annealed film is further enhanced by hydrogen passivation, and the slow PL decay component is increased to 87.5 %. Analyses show that both interface states recombination and quantum confinement effect (QCE) related optical transition in the Si-NCs exist in the optical emission process, and intense PL can be obtained only when the QCE become dominant PL mechanism.


Multilayer Film Quantum Confinement Effect Hydrogen Passivation Slow Decay Component Carrier Recombination Process 



This study was supported by the Key Basic Research Project of Hebei province, PRC (Grant No. 12963929D) and the Natural Science Foundation of Hebei province, PRC (Grant No. F2012201007 and F2012201042).


  1. 1.
    Cullis AG, Canham LT (1991) Nature 353:335CrossRefADSGoogle Scholar
  2. 2.
    Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev OI, Van Tendeloo G, Moshchalkov VV (2008) Nat Nanotechnol 3:174PubMedCrossRefADSGoogle Scholar
  3. 3.
    Photopoulos P, Nassiopoulou AG, Kouvatsos DN, Travlos A (2000) Appl Phys Lett 76:3588CrossRefADSGoogle Scholar
  4. 4.
    Feng L, Zhu J, Wei S, Zhu H, Chen K, Xu D, Li J (2012) Appl Phys A 109:547CrossRefADSGoogle Scholar
  5. 5.
    Hao XJ, Podhorodecki AP, Shen YS, Zatryb G, Misiewicz J, Green MA (2009) Nanotechnology 20:485703PubMedCrossRefGoogle Scholar
  6. 6.
    Hartel AM, Hiller D, Gutsch S, Löper P, Estradé S, Peiró F, Zacharias M (2011) Thin Solid Films 520:121CrossRefADSGoogle Scholar
  7. 7.
    Cheng YC (1977) Prog Surf Sci 8:181CrossRefADSGoogle Scholar
  8. 8.
    Lee BG, Hiller D, Luo JW, Semonin OE, Beard MC, Zacharias M, Stradins P (2012) Adv Funct Mater 22:3223CrossRefGoogle Scholar
  9. 9.
    Wilkinson AR, Elliman RG (2004) J Appl Phys 96:4018CrossRefADSGoogle Scholar
  10. 10.
    Seguini G, Castro C, Chardon SS, BenAssayag G, Pellegrino P, Perego M (2013) Appl Phys Lett 103:023103CrossRefADSGoogle Scholar
  11. 11.
    Wang X, Yu W, Yu X, Feng H, Dai W, Wang X, Lu W, Fu G (2013) Superlattices Microstruct 60:208CrossRefADSGoogle Scholar
  12. 12.
    Fu GS, Wang XZ, Feng HN, Yu X, Dai WL, Lu WB, Yu W (2013) J Alloys Compd 579:284Google Scholar
  13. 13.
    Zacharias M, Dimova-Malinovska D, Stutzmann M (1996) Philos Mag B 73:799CrossRefADSGoogle Scholar
  14. 14.
    Zatryb G, Podhorodecki A, Misiewicz J, Cardin J, Gourbilleau F (2013) Nanoscale Res Lett 8:40PubMedCrossRefPubMedCentralADSGoogle Scholar
  15. 15.
    Timmerman D, Izedin I, Stallinga P, Yassievich IN, Gregorkiewicz T (2008) Nat Photonics 2:105CrossRefADSGoogle Scholar
  16. 16.
    Mulloni V, Bellutti P, Vanzetti L (2005) Surf Sci 585:137CrossRefADSGoogle Scholar
  17. 17.
    Lacona F, Bongiorno C, Spinella C, Boninelli S, Priolo F (2004) J Appl Phys 95:3723CrossRefADSGoogle Scholar
  18. 18.
    Kanemitsu Y, Okamoto S, Otobe M, Oda S (1997) Phys Rev B 55:R7375CrossRefADSGoogle Scholar
  19. 19.
    Guillois O, Herlin-Boime N, Reynaud C, Ledoux G, Huisken F (2004) J Appl Phys 95:3677CrossRefADSGoogle Scholar
  20. 20.
    Jayatilleka H, Diamare D, Wojdak M, Kenyon AJ, Mokry CR, Simpson PJ, Knights AP, Crowe I, Halsall MP (2011) J Appl Phys 110:033522CrossRefGoogle Scholar
  21. 21.
    Kumazawa S, Kubota Y, Takata M, Sakata M, Ishibashi Y (1993) J Appl Crystallogr 26:453CrossRefGoogle Scholar
  22. 22.
    Driel AFV, Nikolaev IS, Vergeer P, Lodahl P, Vanmaekelbergh D, Vos WL (2007) Phys Rev B 75:035329CrossRefADSGoogle Scholar
  23. 23.
    Fu GS, Wang XZ, Feng HN, Dai WL, Yu X, Lu B, and Yu W Appl Phys A. doi: 10.1007/s00339-013-7713-4
  24. 24.
    Yi LX, Heitmann J, Scholz R, Zacharias M (2002) Appl Phys Lett 81:4248CrossRefADSGoogle Scholar
  25. 25.
    Kenyon AJ, Trwoga PF, Pitt CW, Rehm G (1996) J Appl Phys 79:9291CrossRefADSGoogle Scholar
  26. 26.
    Lopez M, Garrido B, Garcıa C, Pellegrino P, Perez-Rodrıguez A, Morante JR, Bonafos C, Carrada M, Claverie A (2002) Appl Phys Lett 80:1637CrossRefADSGoogle Scholar
  27. 27.
    Wilkinson AR, Elliman RG (2006) Nucl Instrum Methods Phys Res B 242:303CrossRefADSGoogle Scholar
  28. 28.
    Wolkin MV, Jorne J, Fauchet PM, Allan G, Delerue C (1999) Phys Rev Lett 82:197CrossRefADSGoogle Scholar
  29. 29.
    Qin GG, Li YJ (2003) Phys Rev B 68:85309CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Hebei Key Laboratory of Optic-Electronic Information Materials, College of Physics Science and TechnologyHebei UniversityBaodingChina

Personalised recommendations