Journal of Materials Science

, Volume 49, Issue 3, pp 1279–1285 | Cite as

Study of the relationship between crystal structure and luminescence in rare-earth-implanted Ga2O3 nanowires during annealing treatments

  • I. López
  • K. Lorenz
  • E. Nogales
  • B. Méndez
  • J. Piqueras
  • E. Alves
  • J. A. García


A systematical analysis of the correlation between the crystalline quality and the luminescence of rare-earth-implanted β-Ga2O3 nanostructures with potential applications in visible and ultraviolet photonics is presented. Europium ions led to red emission while gadolinium ions are efficient ultraviolet emitters. Different degrees of lattice recoveries of the nanostructures have been achieved after implantation by rapid thermal annealing treatments carried out at different temperatures. The recovery process has been analyzed by transmission electron microscopy (TEM), high-resolution TEM, and Raman techniques. High-fluence implantation with either of the two rare earth ions induces partial amorphization of the structures. Partial recrystallization of the nanostructures above 500 °C is revealed by Raman analysis. Nearly complete recovery of the crystal structure is obtained in the annealing temperature range 900–1100 °C, coincident with the expected value for bulk Ga2O3. Cathodoluminescence and photoluminescence allowed comparison of the Eu3+ and Gd3+ intraionic luminescence lines after annealing at different temperatures and their correlation with the crystallinity. It has been found that the width of the Eu3+ luminescence lines clearly correlates with the width of the Raman peaks, both decreasing with annealing temperature, which shows the possibility of using the luminescence of this rare earth as a probe for lattice disorder. On the other hand, our results suggest that Gd3+ lines are much less sensitive to disorder.


Ga2O3 Rapid Thermal Annealing Select Area Electron Diffraction Pattern Crystalline Quality Gallium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by MICINN through Project MAT 2012-31959, and Consolider CSD 2009-00013. The authors are grateful to Dr. Luca Gregoratti at the Sincrotrone Elettra Trieste for useful advice on XPS measurements. We thank Sérgio Miranda (IST/ITN) for the RTA treatments. Financial support by FCT Portugal is acknowledged (PTDC/CTM/100756/2008; PTDC/CTM-NAN/2156/2012).


  1. 1.
    Ronning C, Borschel C, Geburt S, Niepelt R (2010) Mat Sci Eng R 70:30CrossRefGoogle Scholar
  2. 2.
    Steckl AJ, Park JH, Zavada JM (2007) Mater Today 10:20CrossRefGoogle Scholar
  3. 3.
    Lorenz K, Alves E, Gloux F, Ruterana P (2010) In: O’Donnell KP, Dierolf V (eds) Rare earth doped III-nitrides for optoelectronic and spintronic applications. Springer, DordrechtGoogle Scholar
  4. 4.
    Wang J, Hark SK, Li Q (2006) Microsc Microanal 12:748CrossRefADSGoogle Scholar
  5. 5.
    Geburt S, Stichtenoth D, Mueller S, Dewald W, Ronning C, Wang J, Jiao Y, Rao YY, Hark SK, Li Q (2008) J Nanosci Nanotechnol 8:244PubMedCrossRefGoogle Scholar
  6. 6.
    Nogales E, Hidalgo P, Lorenz K, Méndez B, Piqueras J, Alves E (2012) Nanotechnology 22:285706CrossRefGoogle Scholar
  7. 7.
    Nogales E, López I, Méndez B, Piqueras J, Lorenz K, Alves E, García JA (2012) Proc SPIE 8263:82630BCrossRefADSGoogle Scholar
  8. 8.
    Perkowitz S (1993) Optical characterization of semiconductors: infrared, Raman and photoluminescence spectroscopy. Academic Press, CambridgeGoogle Scholar
  9. 9.
    Gouadec G, Colombam P (2007) Progr Cryst Growth Charact Mater 53:1CrossRefGoogle Scholar
  10. 10.
    Dohy D, Lucazeau G, Revcolevschi A (1982) J Sol State Chem 45:180CrossRefADSGoogle Scholar
  11. 11.
    Ziegler JF, Biersack JP and Ziegler MD. SRIM 2008 - The Stopping and Range of Ions in Matter, SRIM Co., Chester, (last accessed April 2013)
  12. 12.
    Zhuravlev VD (2007) Bull Russ Acad Sci 71:681MathSciNetCrossRefGoogle Scholar
  13. 13.
    Miller DJ, Biesinger MC, McIntyre NS (2002) Surf Interface Anal 33:299CrossRefGoogle Scholar
  14. 14.
    NIST Standard Reference Database 20, Version 4.1. Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell, (last accessed April 2013)
  15. 15.
    Ghosh SC, Biesinger MC, LaPierre RR, Kruse P (2007) J Appl Phys 101:114322CrossRefADSGoogle Scholar
  16. 16.
    López I, Utrilla AD, Nogales E, Méndez B, Piqueras J, Peche A, Ramírez-Castellanos J, González-Calbet JM (2012) J Phys Chem C 116:3935CrossRefGoogle Scholar
  17. 17.
    Al-Kuhaili MF, Durrani SMA, Khawaja EE (2003) Appl Phys Lett 83:4533CrossRefADSGoogle Scholar
  18. 18.
    Mercier F, Alliot C, Bion L, Thromat N, Toulhoat P (2006) J Electron Spectrosc Relat Phenom 150:21CrossRefGoogle Scholar
  19. 19.
    Dierolf V, Sandmann C, Zavada J, Chow P, Hertog B (2004) J Appl Phys 95:5464CrossRefADSGoogle Scholar
  20. 20.
    Vetter U, Zenneck J, Hofsäss H (2003) App Phys Lett 83:2145CrossRefADSGoogle Scholar
  21. 21.
    Kitayama S, Yoshitomi H, Iwahashi S, Nakamura J, Kita T, Chigi Y, Nishimoto T, Tanaka H, Kobayashi M, Ishihara T, Izumi H (2011) J Appl Phys 110:093108CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • I. López
    • 1
  • K. Lorenz
    • 2
  • E. Nogales
    • 1
  • B. Méndez
    • 1
  • J. Piqueras
    • 1
  • E. Alves
    • 2
  • J. A. García
    • 3
  1. 1.Departamento de Física de MaterialesUniversidad Complutense de MadridMadridSpain
  2. 2.IST/ITN, Instituto Superior TécnicoSacavémPortugal
  3. 3.Departamento de Física Aplicada IIUniversidad del País VascoBilbaoSpain

Personalised recommendations