Journal of Materials Science

, Volume 49, Issue 3, pp 1246–1255 | Cite as

A microscale formaldehyde gas sensor based on Zn2SnO4/SnO2 and produced by combining hydrothermal synthesis with post-synthetic heat treatment

  • Wei Tang
  • Jing Wang
  • Pengjun Yao
  • Xiaogan Li


A silicon-based micro-structure gas sensor for detecting formaldehyde was successfully fabricated and the sensing material was synthesized via a method of combining the traditional hydrothermal synthesis with subsequent heat treatment. Finite element analysis software of ANSYS was used to analyze the temperature distribution on the SiO2/Si substrate with heating electrodes and signal electrodes on the same plane with the aim of reducing the complexity of micro-machining process. Meanwhile, in order to obtain lower power consumption, two different structures of the SiO2/Si substrates with and without back etched were simulated, respectively. The simulation results showed that in the same heat rate and convection conditions, the back-etched SiO2/Si substrate had higher temperature, more uniform temperature distribution, and lower energy consumption. The Zn2SnO4/SnO2 cubes were obtained by annealing the as-synthesized precursors of ZnSn(OH)6 at 700 °C for 3 h. Thermal gravimetric and differential thermal analyzer, X-ray diffraction, Fourier transform infrared spectra, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were analyzed to characterize the phase structure, composition, morphology, and elemental atomic ratio of Zn2SnO4/SnO2. The gas sensing properties of Zn2SnO4/SnO2 were tested, which showed that the gas sensor based on Zn2SnO4/SnO2 exhibited excellent formaldehyde sensing performance.


SnO2 Uniform Temperature Distribution Sick Building Syndrome Finite Element Analysis Software Signal Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This subject was supported by the National Natural Science Foundation of China (61176068, 61001054, and 61131004) and the 973 Projects (2011CB302105) for financial supports.

Supplementary material

10853_2013_7808_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2405 kb)


  1. 1.
    Wang Z, Bai Z, Yu H et al (2004) Energy Build 36:1299. doi: 10.1016/j.enbuild.2003.09.013 CrossRefGoogle Scholar
  2. 2.
    Kawamura K, Kerman K, Fujihara M et al (2005) Sens Actuators B 105:495. doi: 10.1016/j.snb.2004.07.010 CrossRefGoogle Scholar
  3. 3.
    Vianello F, Boscolo-Chio R, Signorini S et al (2007) Biosens Bioelectron 22:920. doi: 10.1016/j.bios.2006.03.018 PubMedCrossRefGoogle Scholar
  4. 4.
    Herschkovitz Y, Eshkenazi I, Campbell CE et al (2000) J Electroanal Chem 491:182. doi: 10.1016/S0022-0728(00)00170-4 CrossRefGoogle Scholar
  5. 5.
    Mine Y, Melander N, Richter D et al (1997) Appl Phys B 65:771. doi: 10.1007/s003400050344 CrossRefADSGoogle Scholar
  6. 6.
    Vianello F, Stefani A, Di Paolo ML et al (1996) Sens Actuators B 37:49. doi: 10.1016/S0925-4005(97)80071-8 CrossRefGoogle Scholar
  7. 7.
    Zheng YG, Wang J, Yao PJ (2011) Sens Actuators B 156:723. doi: 10.1016/j.snb.2011.02.026 CrossRefGoogle Scholar
  8. 8.
    Du HY, Wang J, Su MY et al (2012) Sens Actuators B 166:746. doi: 10.1016/j.snb.2012.03.055 CrossRefGoogle Scholar
  9. 9.
    Yao PJ, Wang J, Chu WL et al (2013) J Mater Sci 48:441. doi: 10.1007/s10853-012-6758-7 CrossRefADSGoogle Scholar
  10. 10.
    Yildiz A, Crisan D, Dragan N et al (2011) J Mater Sci: Mater Electron 22:1420. doi: 10.1007/s10854-011-0324-y Google Scholar
  11. 11.
    Huang SX, Qin HW, Song P et al (2007) J Mater Sci 42:9973. doi: 10.1007/s10853-007-1991-1 CrossRefADSGoogle Scholar
  12. 12.
    Sivapunniyam A, Wiromrat N, Myint MTZ et al (2011) Sens Actuators B 157:232. doi: 10.1016/j.snb.2011.03.055 CrossRefGoogle Scholar
  13. 13.
    Yu JH, Choi GM (2002) J Electroceram 8:249. doi: 10.1023/A:1020810503321 CrossRefGoogle Scholar
  14. 14.
    Stambolova I, Konstantinov K, Khristova M et al (1998) Phys Status Solid A 167:R11. doi: 10.1002/(SICI)1521-396X(199806)167:2<R11:AID-PSSA999911>3.0.CO;2-8 CrossRefADSGoogle Scholar
  15. 15.
    Chen Z, Cao M, Hu C (2011) J Phys Chem C 115:5522. doi: 10.1021/jp111785t CrossRefGoogle Scholar
  16. 16.
    Jiang YQ, He CX, Sun R et al (2012) Mater Chem Phys 136:698. doi: 10.1016/j.matchemphys.2012.07.044 CrossRefGoogle Scholar
  17. 17.
    Choi SH, Hwang IS, Lee JH et al (2011) Chem Commun 47:9315. doi: 10.1039/C1CC10707K CrossRefGoogle Scholar
  18. 18.
    Wang C, Wang XM, Zhao JC et al (2002) J Mater Sci 37:2989. doi: 10.1023/A:1016077216172 Google Scholar
  19. 19.
    Wang L, Zhang X, Liao X et al (2005) Nanotechnology 16:2928. doi: 10.1088/0957-4484/16/12/034 CrossRefADSGoogle Scholar
  20. 20.
    Tan B, Toman E, Li Y et al (2007) J Am Chem Soc 129:4162. doi: 10.1021/ja070804f PubMedCrossRefGoogle Scholar
  21. 21.
    Rong A, Gao XP, Li GR et al (2006) J Phys Chem B 110:14754. doi: 10.1021/jp062875r PubMedCrossRefGoogle Scholar
  22. 22.
    Teeramongkonrasmee A, Sriyudthsak M (2000) Sens Actuators B 66:256. doi: 10.1016/S0925-4005(00)00346-4 CrossRefGoogle Scholar
  23. 23.
    Fang YK, Lee JJ (1989) Thin Solid Films 169:51. doi: 10.1016/S0040-6090(89)80004-5 CrossRefADSGoogle Scholar
  24. 24.
    Liu Y, Koep E, Liu M (2005) Chem Mater 17:3997. doi: 10.1021/cm050451o CrossRefGoogle Scholar
  25. 25.
    Gopal Reddy CV, Manorama SV, Rao VJ (2000) J Mater Sci 35:3403. doi: 10.1023/A:1004841320634 CrossRefADSGoogle Scholar
  26. 26.
    Suzuki T, Yamazaki T, Takahashi K et al (1989) J Mater Sci 24:2127. doi: 10.1007/BF02385431 CrossRefADSGoogle Scholar
  27. 27.
    Ippommatsu M, Sasaki H, Yanagida H (1990) J Mater Sci 25:259. doi: 10.1007/BF00544217 CrossRefADSGoogle Scholar
  28. 28.
    Suzuki T, Yanazaki T, Hayashi K et al (1991) J Mater Sci 26:6419. doi: 10.1007/BF02387823 CrossRefADSGoogle Scholar
  29. 29.
    Sun FJ, Li XG, Liu LP et al (2013) Sens Actuators B 184:220. doi: 10.1016/j.snb.2013.04.002 CrossRefGoogle Scholar
  30. 30.
    Astié S, Gué AM, Scheid E et al (2000) Sens Actuators B 67:84. doi: 10.1016/S0925-4005(00)00403-2 CrossRefGoogle Scholar
  31. 31.
    Puigcorbe J, Vogel D, Michel B et al (2003) J Micromech Microeng 13:548. doi: 10.1088/0960-1317/13/5/304 CrossRefGoogle Scholar
  32. 32.
    Lee CY, Chiang CM, Wang YH et al (2007) Sens Actuators B 122:503. doi: 10.1016/j.snb.2006.06.018 CrossRefGoogle Scholar
  33. 33.
    Laconte J, Dupont C, Akheyar A et al (2002) SPIE 2002:634. doi: 10.1117/12.462865 CrossRefGoogle Scholar
  34. 34.
    Liu L, Zhang T, Qi Q et al (2007) Solid-State Electron 51:1029. doi: 10.1016/j.sse.2007.05.016 CrossRefADSGoogle Scholar
  35. 35.
    Zhang Z, Yin C, Tao C et al (2011) Proc Eng 12:105. doi: 10.1016/j.proeng.2011.05.018 CrossRefGoogle Scholar
  36. 36.
    Udrea F, Gardner JW, Setiadi D et al (2001) Sens Actuators B 78:180. doi: 10.1016/S0925-4005(01)00810-3 CrossRefGoogle Scholar
  37. 37.
    Mo Y, Okawa Y, Inoue K et al (2002) Sens Actuators A 100:94. doi: 10.1016/S0924-4247(02)00145-0 CrossRefGoogle Scholar
  38. 38.
    De Cesare F, Macagnano A, Zampetti E et al (2012) Sens Actuators B 179:87. doi: 10.1016/j.snb.2012.10.015 Google Scholar
  39. 39.
    Wang J, Zhang P, Qi JQ et al (2009) Sens Actuators B 136:399. doi: 10.1016/j.snb.2008.12.056 CrossRefGoogle Scholar
  40. 40.
    Forleo A, Francioso L, Capone S et al (2011) Sens Actuators B 154:283. doi: 10.1016/j.snb.2010.01.010 CrossRefGoogle Scholar
  41. 41.
    Choi JK, Hwang IS, Kim SJ et al (2010) Sens Actuators B 150:191. doi: 10.1016/j.snb.2010.07.013 CrossRefGoogle Scholar
  42. 42.
    Du HY, Wang J, Yao PJ, Hao YW, Li XG (2013) J Mater Sci 48:3597. doi: 10.1007/s10853-013-7157-4 CrossRefADSGoogle Scholar
  43. 43.
    Chen YJ, Yu L, Li Q et al (2012) Nanotechnology 23:415501. doi: 10.1088/0957-4484/23/41/415501 PubMedCrossRefGoogle Scholar
  44. 44.
    Chu X, Chen T, Zhang W et al (2009) Sens Actuators B 142:49. doi: 10.1016/j.snb.2009.07.049 CrossRefGoogle Scholar
  45. 45.
    Takata M, Tsubone D, Yanagida H (1976) J Am Ceram Soc 59:4. doi: 10.1111/j.1151-2916.1976.tb09374.x CrossRefGoogle Scholar
  46. 46.
    Yoon DH, Choi GM (1997) Sens Actuators B 45:251. doi: 10.1016/S0925-4005(97)00316-X CrossRefGoogle Scholar
  47. 47.
    Dirksen JA, Duval K, Ring TA (2001) Sens Actuators B 80:106. doi: 10.1016/S0925-4005(01)00898-X CrossRefGoogle Scholar
  48. 48.
    Chen T, Liu QJ, Zhou ZL et al (2008) Sens Actuators B 131:301. doi: 10.1016/j.snb.2007.11.025 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Electronic Science and TechnologyDalian University of TechnologyDalianChina
  2. 2.School of Educational TechnologyShenyang Normal UniversityShenyangChina

Personalised recommendations