Journal of Materials Science

, Volume 49, Issue 3, pp 1121–1129 | Cite as

Hot working behavior of a WE54 magnesium alloy

  • M. Lentz
  • S. Gall
  • F. Schmack
  • H. M. Mayer
  • W. Reimers


The plastic deformation and recrystallization behavior of the commercial magnesium alloys WE54 was analyzed using the strain rates 0.01, 0.1, 1, and 5 s−1 in the temperature range from 400 to 550 °C. The dependence of the flow stress on the temperature and the strain rate was modeled using the Garofalo hyperbolic sine equation. Thereby, the activation energy for plastic deformation of 224 kJ mol−1 was determined considering the flow stress at a strain of 0.5. The analysis revealed a stress exponent of 3.2. Furthermore, processing maps were generated by plotting the efficiency of power dissipation and the instability parameter considering different instability criteria as a function of the temperature and the strain rate. Depending on these parameters the extent of the recrystallization and the localization of the nucleation varied, significantly. At 400 °C, the recrystallization is very limited and was observed at grain boundaries (GB), shear bands (SB), and twin boundaries (TW). Increasing temperatures result in an increased recrystallized fraction, while lower strain rates promote grain boundary nucleation and reduce the amount of SBN and TW. The prediction of the processing map was verified by large scale extrusion trials, which proof that the evaluation of hot compression data can provide an effective tool to establish viable processing parameters.


Shear Band High Strain Rate Grain Boundary Power Dissipation Strain Rate Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for the financial support of the Deutsche Forschungsgemeinschaft (DFG) under the Contract Number RE 688/67-1.


  1. 1.
    Garofalo F (1963) Trans Metall Soc A.I.M.E 227:351Google Scholar
  2. 2.
    McQueen HJ, Ryan ND (2002) Mater Sci Eng A 322:43CrossRefGoogle Scholar
  3. 3.
    Slooff FA, Zhou J, Duszczyk J, Katgerman L (2008) J Mater Sci 43:7165. doi: 10.1007/s10853-008-3014-2 CrossRefADSGoogle Scholar
  4. 4.
    Slooff FA, Dzwonczyk JS, Zhou J, Duszczyk J, Katgerman L (2010) Mater Sci Eng 527:735CrossRefGoogle Scholar
  5. 5.
    Gall S, Huppmann M, Mayer HM, Müller S, Reimers W (2013) J Mater Sci 48:473. doi: 10.1007/s10853-012-6761-z CrossRefADSGoogle Scholar
  6. 6.
    Al-Samman T, Gottstein G (2008) Mater Sci Eng A 490:411CrossRefGoogle Scholar
  7. 7.
    Galiyev A, Kaibyshev R, Gottstein G (2001) Acta Mater 49:1199CrossRefGoogle Scholar
  8. 8.
    Galiyev A, Kaibyshev R, Sakai T (2003) Mater Sci Forum 419–422:509CrossRefGoogle Scholar
  9. 9.
    Prasad YVRK, Gegel HL, Doraivelu SM, Malas JC, Morgan JT, Lark KA, Barker DR (1984) Metall Trans A 15:1883CrossRefGoogle Scholar
  10. 10.
    Prasad YVRK (2003) J Mater Eng Perform 12:638CrossRefGoogle Scholar
  11. 11.
    Prasad YVRK, Rao KP, Hort N, Kainer KU (2009) Mater Sci Eng A 502:25CrossRefGoogle Scholar
  12. 12.
    Prasad BK, Narayan SP, Modi OP, Ramakrishnan N, Kumar AM, Sachdev AK (2012) Int J Mater Res 103:5Google Scholar
  13. 13.
    Carsí M, Rieiro I, Jiménez JA, Peñalba F, Ruano OA (2003) J Mater Process Technol 143–144:416CrossRefGoogle Scholar
  14. 14.
    Evangelista E, Spigarelli S (2002) Metall Mater Trans 33A:373CrossRefGoogle Scholar
  15. 15.
    Murty SVSN, Rao BN (1998) Mater Sci Eng A 254:76CrossRefGoogle Scholar
  16. 16.
    Murty SVSN, Rao BN (1999) Mater Sci Eng A 267:159CrossRefGoogle Scholar
  17. 17.
    Rajput SK, Dikovits M, Chaudhari GP, Poletti C, Warchomicka F, Pancholi V, Nath SK (2013) Mater Sci Eng.
  18. 18.
    Poletti C, Six J, Hochegger M, Degischer HP, Ilie S (2011) Steel Res Int 82:710CrossRefGoogle Scholar
  19. 19.
    Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H (2005) Biomaterials 26:3557PubMedCrossRefGoogle Scholar
  20. 20.
    Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F (2008) Curr Opin Solid State Mater Sci 12:63CrossRefADSGoogle Scholar
  21. 21.
    Wang G, Ge S, Shen Y, Wang H, Dong Q, Zhang Q, Gao J, Wang Y (2012) Mater Sci Eng C 32:2190CrossRefGoogle Scholar
  22. 22.
    Beladi H, Barnett MR (2007) Mater Sci Eng A 452–453:306CrossRefGoogle Scholar
  23. 23.
    Tang W, Chen R, Han E (2005) Mater Sci Forum 488–489:269CrossRefGoogle Scholar
  24. 24.
    Goetz RL, Semiatin SL (2001) J Mater Eng Perform 10:710CrossRefGoogle Scholar
  25. 25.
    Watanabe H, Tsutsui H, Mukai T, Kohzu M, Tanabe S, Higashi K (2001) Int J Plast 17:387CrossRefGoogle Scholar
  26. 26.
    Agnew SR, Duygulu Ö (2005) Int J Plast 21:1161CrossRefMATHGoogle Scholar
  27. 27.
    Anyanwu IA, Kamado S, Kojima Y (2001) Mater Trans JIM 42:1212CrossRefGoogle Scholar
  28. 28.
    Frost HJ, Ashby MF (2012) The plasticity and creep of metals and ceramics version of deformation-mecahnism maps. Cambridge University, Cambridge.
  29. 29.
    Myshlyaev MM, McQueen HJ, Mwembela A, Konopleva E (2002) Mater Sci Eng A 337:121CrossRefGoogle Scholar
  30. 30.
    Stanford N, Barnett MR (2008) Mater Sci Eng A 496:399CrossRefGoogle Scholar
  31. 31.
    Bauser M, Sauer G, Siegert K (2001) Strangpressen. Aluminium Verlag, DüsseldorfGoogle Scholar
  32. 32.
    Feltham P (1956) Metal Treatment 23:440Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Lentz
    • 1
  • S. Gall
    • 2
  • F. Schmack
    • 1
  • H. M. Mayer
    • 1
  • W. Reimers
    • 1
  1. 1.Metallische WerkstoffeTechnische Universität BerlinBerlinGermany
  2. 2.Forschungszentrum Strangpressen, Metallische WerkstoffeTechnische Universität BerlinBerlinGermany

Personalised recommendations