Advertisement

Journal of Materials Science

, Volume 49, Issue 3, pp 1014–1024 | Cite as

Hydrothermal synthesis of lead dioxide/multiwall carbon nanotube nanocomposite and its application in removal of some organic water pollutants

  • Shahram Ghasemi
  • Hassan Karami
  • Hassan Khanezar
Article

Abstract

Lead dioxide/multiwall carbon nanotube (PbO2/MWCNT) nanocomposite was synthesized by hydrothermal formation of lead dioxide on functionalized MWCNT. PbO2 nanoparticles were formed from 0.015 M Pb(OH) 3 (75 ml) solution in the presence of polyvinyl pyrrolidone (0.1 g). The solution was mixed with ammonium persulfate (NH4)2S2O8 as oxidizing agent and transferred to 100 ml Teflon-lined stainless steel autoclave heating it to 60 °C for 3 h. To prepare nanocomposite, PbO2 formation was carried out in the presence of ultrasonically dispersed MWCNT. A black-brown product was formed in reaction vessel. The product was collected and then dried in an oven at 70 °C for 24 h. The morphology and composition of precipitate were investigated by X-ray power diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy and transmission electron microscopy (TEM). The results of XRD and TEM show globular α-PbO2 nanoparticles immobilize on the surface of the MWCNTs. Also, TGA results demonstrated the presence of CNT in nanocomposite. The prepared PbO2/MWCNT nanocomposite is used to construct the solid-phase cartridge. The performance of solid phase in the removal of pesticides from drinking water is determined by gas chromatography–mass spectroscopy (GC–MS) analysis. The average adsorption depends on concentration of spiked pollutants and their relative standard deviations were between 1.4 and 11 %.

Keywords

PbO2 Ammonium Persulfate Proton Exchange Membrane Fuel Cell Lead Dioxide Lead Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Mackiewicz N, Surendran G, Remita H, Keita B, Zhang G, Nadjo L, Hagge A, Doris E, Mioskowski C (2008) J Am Chem Soc 130:8110PubMedCrossRefGoogle Scholar
  2. 2.
    Krueger A (2010) Carbon materials and nanotechnology. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  3. 3.
    Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) Anal Biochem 363:143PubMedCrossRefGoogle Scholar
  4. 4.
    Lin JH, He CY, Zhao Y, Zhang SS (2009) Sensor Actuat B Chem 137:768CrossRefGoogle Scholar
  5. 5.
    Fu Q, Lu C, Liu J (2002) Nano Lett 2:329CrossRefADSGoogle Scholar
  6. 6.
    Ahmad I, Unwin M, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2010) Compos Sci Technol 70:1199CrossRefGoogle Scholar
  7. 7.
    Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Science 303:62PubMedCrossRefADSGoogle Scholar
  8. 8.
    Wu Y, Hu C (2004) J Electrochem Soc A 151:2060CrossRefGoogle Scholar
  9. 9.
    Feng C, Li L, Guo Z, Li H (2010) J Alloy Compd 504:457CrossRefGoogle Scholar
  10. 10.
    Ye JS, Cui HF, Liu X, Lim TM, Zhang WD, Sheu FS (2005) Small 1:560PubMedCrossRefGoogle Scholar
  11. 11.
    Fang B, Zhang CH, Zhang W, Wang GF (2009) Electrochim Acta 55:178CrossRefGoogle Scholar
  12. 12.
    Zhang W, Xu B (2009) Electrochem Commun 11:1038CrossRefGoogle Scholar
  13. 13.
    Shi D, Lian J, Wang W, Liu G, He P, Dong Z, Wang L, Ewing RC (2006) Adv Mater 18:189CrossRefGoogle Scholar
  14. 14.
    Taleshi F, Hosseini AA (2012) J Nanostruct Chem 3:1CrossRefGoogle Scholar
  15. 15.
    Li W, Jung H, Duc Hoa N, Kim D, Hong S, Kim H (2010) Sensor Actuat B Chem 150:160CrossRefGoogle Scholar
  16. 16.
    He Y, Huang L, Cai J, Zheng X, Sun S (2010) Electrochim Acta 55:1140CrossRefGoogle Scholar
  17. 17.
    Duan X, Ma F, Yuan Z, Chang L, Jin X (2012) Electrochim Acta 76:333CrossRefGoogle Scholar
  18. 18.
    Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB (2008) J Power Sources 178:483CrossRefGoogle Scholar
  19. 19.
    Fan Z, Chen J, Zhang B, Liu B, Zhong X, Kuang Y (2008) Diam Relat Mater 17:1943CrossRefADSGoogle Scholar
  20. 20.
    Yan J, Fan Z, Wei T, Cheng J, Shao B, Wang K, Song L, Zhang M (2009) J Power Sources 194:1202CrossRefGoogle Scholar
  21. 21.
    Gong K, Yu P, Su L, Xiong S, Mao L (2007) J Phys Chem C 111:1882CrossRefGoogle Scholar
  22. 22.
    Cheng Y, Liu Y, Huang J, Li K, Xian Y, Zhang W, Jin L (2009) Electrochim Acta 54:2588CrossRefGoogle Scholar
  23. 23.
    Wang G, Shen X, Yao J, Wexler D, Ahn J (2009) Electrochem Commun 11:546CrossRefGoogle Scholar
  24. 24.
    Oki A, Adams L, Luo Z (2008) Inorg Chem Commun 11:275CrossRefGoogle Scholar
  25. 25.
    Du C, Chen M, Cao X, Yin G, Shi P (2009) Electrochem Commun 11:496CrossRefGoogle Scholar
  26. 26.
    Karami H, Shamsipur M, Ghasemi S, Mousavi MF (2007) J Power Sources 164:896CrossRefGoogle Scholar
  27. 27.
    Johnson DC, Feng J, Houk LL (2000) Electrochim Acta 46:323CrossRefGoogle Scholar
  28. 28.
    Mehdinia A, Mousavi MF, Shamsipur M (2006) J Chromatogr A 113:24CrossRefGoogle Scholar
  29. 29.
    Velichenko AB, Devilliers D (2007) J Fluorine Chem 128:269CrossRefGoogle Scholar
  30. 30.
    Hill RJ, Houtchin MR (1985) Electrochim Acta 30:559CrossRefGoogle Scholar
  31. 31.
    Cao M, Hu C, Peng G, Qi Y, Wang E (2003) J Am Chem Soc 125:4982PubMedCrossRefGoogle Scholar
  32. 32.
    Ghasemi S, Mousavi MF, Shamsipur M, Karami H (2008) Ultrason Sonochem 15:448PubMedCrossRefGoogle Scholar
  33. 33.
    Ghasemi S, Mousavi MF, Shamsipur M (2007) Electrochim Acta 53:459CrossRefGoogle Scholar
  34. 34.
    Ghasemi S, Karami H, Mousavi MF, Shamsipur M (2005) Electrochem Commun 7:1254Google Scholar
  35. 35.
    Li G, Yip HY, Wong KH, Hu C, Qu J, Wong PK (2011) J Environ Sci 23:998CrossRefGoogle Scholar
  36. 36.
    Weiss E, Groenen-Serrano K, Savall A (2008) J Appl Electrochem 38:329CrossRefGoogle Scholar
  37. 37.
    Zhang W, Wan F, Gu J, Ai S, Ye J, Yamamoto K, Jin L (2004) Chromatographia 59:677Google Scholar
  38. 38.
    Tan C, Xiang B, Li Y, Fang J, Huang M (2011) Chem Engine J 166:15CrossRefGoogle Scholar
  39. 39.
    Ueda M, Watanabe A, Kameyama T, Matsumoto Y, Sekimoto M, Shimamune T (1995) J Appl Electrochem 25:817CrossRefGoogle Scholar
  40. 40.
    Velichenko AB, Amadelli R, Benedetti A, Girenko DV, Kovalyov SV, Danilov FI (2002) J Electrochem Soc 149:C445CrossRefGoogle Scholar
  41. 41.
    Devilliers D, Dinh Thi MT, Mahé E, Dauriac V, Lequeux N (2004) J Electroanal Chem 573:227CrossRefGoogle Scholar
  42. 42.
    Pan H, Wai CM (2009) J Phys Chem C 113:19782CrossRefGoogle Scholar
  43. 43.
    Sogabe T, Matsumoto T (1996) J Eur Ceram Soc 16:395CrossRefGoogle Scholar
  44. 44.
    Li J, Tang S, Lu L, Zeng HC (2007) J Am Chem Soc 129:9401PubMedCrossRefGoogle Scholar
  45. 45.
    Hua M, Chen H, Tsai R, Tseng S, Hu S, Chiang C, Chang P (2011) J Phys Chem C 115:15182CrossRefGoogle Scholar
  46. 46.
    Avilés F, Cauich-Rodríguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R (2009) Carbon 47:2970CrossRefGoogle Scholar
  47. 47.
    Liu X, Ji Y, Zhang Y, Zhang H, Liu M (2007) J Chromatogr A 1165:10PubMedCrossRefGoogle Scholar
  48. 48.
    Ghasemi E, Farahani H (2012) J Chromatogr A 1258:16PubMedCrossRefGoogle Scholar
  49. 49.
    Jin J, Zhang Z, Li Y, Peipei Q, Lu X, Wang J, Chen J, Su F (2010) Anal Chim Acta 678:183PubMedCrossRefGoogle Scholar
  50. 50.
    Banitaba MH, Davarani SSH, Pourahadi A (2013) J Chromatogr A 1283:1PubMedCrossRefGoogle Scholar
  51. 51.
    Chen L, Chen W, Ma C, Dud D, Chen X (2011) Talanta 84:104PubMedCrossRefGoogle Scholar
  52. 52.
    Ravelo-Pérez LM, Hernández-Borges J, Rodríguez-Delgado MA (2008) J Sep Sci 31:3612PubMedCrossRefGoogle Scholar
  53. 53.
    Wang S, Zhao P, Min G, Fang G (2007) J Chromatogr A 1165:166PubMedCrossRefGoogle Scholar
  54. 54.
    Zhou Q, Xiao J, Ding Y (2007) Anal Chim Acta 602:223PubMedCrossRefGoogle Scholar
  55. 55.
    Dong MF, Ma YQ, Zhao EC, Qian C, Han L, Jiang S (2009) Microchim Acta 165:123CrossRefGoogle Scholar
  56. 56.
    Zhou Q, Xiao J, Xie G, Wang W, Ding Y, Bai H (2009) Microchim Acta 164:419CrossRefGoogle Scholar
  57. 57.
    Hadjmohammadi MR, Peyrovi M, Biparva P (2010) J Sep Sci 33:1044PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shahram Ghasemi
    • 1
  • Hassan Karami
    • 2
  • Hassan Khanezar
    • 2
    • 3
  1. 1.Faculty of ChemistryUniversity of MazandaranBabolsarIran
  2. 2.Department of ChemistryPayame Noor UniversityAbharIran
  3. 3.Department of ChemistryStandard Research InstituteKarajIran

Personalised recommendations