Journal of Materials Science

, Volume 49, Issue 2, pp 710–719 | Cite as

Oxidation-induced microstructural changes of a polymer-derived Nextel™ 610 ceramic composite and impact on the mechanical performance

  • E. Volkmann
  • L. Lima Evangelista
  • K. Tushtev
  • D. Koch
  • C. Wilhelmi
  • K. Rezwan


This study analyses the effects of heat treatments in oxidative atmosphere on the mechanical and microstructural properties of a fiber-reinforced weak interface composite (UMOX™) which is composed of a mullite-SiOC matrix and Nextel™ 610 fibers with fugitive coatings. Composites of different porosity grades, depending on the polymer infiltration and pyrolysis cycle, are exposed to 1000 and 1200 °C for 50 h. The exposure provokes the formation of silica, which leads to matrix densification and the formation of silica bridges at the fiber–matrix interface, resulting in an increased interfacial bonding strength. Consequently, the fracture toughness and the flexural strength are significantly reduced. The study confirms that SiOC-based materials are suitable for an application at high temperatures in oxygen-rich atmospheres up to 1000 °C. It is, however, important to consider the microstructural changes and thereby induced decrease of the overall mechanical performance during a high-temperature use.


Fracture Toughness Open Porosity Notch Sensitivity Shrinkage Crack Crosshead Displacement Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank T. Machry from EADS Innovation Works for the support during the manufacturing of the materials and P. Witte of Historische Geologie–Paläontologie, University Bremen for the help with the SEM pictures. Fruitful discussions with T. C. Schumacher from University of Bremen are gratefully acknowledged.

Supplementary material

10853_2013_7752_MOESM1_ESM.tif (85 kb)
Figure A1: Change of mass during thermogravimetrical analysis from ambient temperature to 1000 °C. Measurements were made with heating rate of 2 K/min in flowing air atmosphere (4 l/h)
10853_2013_7752_MOESM2_ESM.tif (5.1 mb)
Figure A2: Surface of the Nextel™ fiber in an as-received sample and in a sample after a heat treatment for 50 h at 1200 °C


  1. 1.
    Zok FW (2006) J Am Ceram Soc 89(11):3309–3324CrossRefGoogle Scholar
  2. 2.
    Knoche R, Werth E, Weth M, García JG, Wilhelmi C, Gerendás M (2011) In: Mechanical properties and performance of engineering ceramics and composites VI. Wiley, pp 77–87. doi:  10.1002/9781118095355.ch7
  3. 3.
    Motz G, Schmidt S, Beyer S (2008) The PIP-process: precursor properties and applications. Ceramic matrix composites. Wiley, New YorkGoogle Scholar
  4. 4.
    Jones R, Szweda A, Petrak D (1999) Compos A Appl Sci Manuf 30(4):569–575. doi: 10.1016/s1359-835x(98)00151-1 CrossRefGoogle Scholar
  5. 5.
    Modena S, Sorarù GD, Blum Y, Raj R (2005) J Am Ceram Soc 88(2):339–345. doi: 10.1111/j.1551-2916.2005.00043.x CrossRefGoogle Scholar
  6. 6.
    Brewer CM, Bujalski DR, Parent VE, Su K, Zank GA (1999) J Sol Gel Sci Technol 14(1):49–68. doi: 10.1023/a:1008723813991 CrossRefGoogle Scholar
  7. 7.
    Chollon G (2000) J Eur Ceram Soc 20(12):1959–1974. doi: 10.1016/s0955-2219(00)00101-1 CrossRefGoogle Scholar
  8. 8.
    Hurwitz FI, Meador MAB (1999) J Sol Gel Sci Technol 14(1):75–86. doi: 10.1023/a:1008727914900 CrossRefGoogle Scholar
  9. 9.
    Soraru GD, Suttor D (1999) J Sol Gel Sci Technol 14(1):69–74CrossRefGoogle Scholar
  10. 10.
    Takahashi T, Münstedt H, Modesti M, Colombo P (2001) J Eur Ceram Soc 21(16):2821–2828. doi: 10.1016/s0955-2219(01)00220-5 CrossRefGoogle Scholar
  11. 11.
    Xu TH, Ma QS, Chen ZH (2011) Ceram Int 37(7):2555–2559. doi: 10.1016/j.ceramint.2011.03.053 CrossRefGoogle Scholar
  12. 12.
    Harris M, Chaudhary T, Drzal L, Laine RM (1995) Mater Sci Eng A 195:223–236. doi: 10.1016/0921-5093(94)06522-5 CrossRefGoogle Scholar
  13. 13.
    Wang Y, Li H, Zhang L, Cheng L (2009) Ceram Int 35(3):1129–1132. doi: 10.1016/j.ceramint.2008.05.006 CrossRefGoogle Scholar
  14. 14.
    Rangarajan S, Belardinelli R, Aswath PB (1999) J Mater Sci 34(3):515–533. doi: 10.1023/a:1004590527954 CrossRefADSGoogle Scholar
  15. 15.
    Gonczy ST, Sikonia JG (2005) In: Bansal NP (ed) Handbook of ceramic composites. Springer, pp 347–373. doi:  10.1007/0-387-23986-3_15
  16. 16.
    Weaver JH, Yang J, Zok FW (2008) J Am Ceram Soc 91(12):4003–4008. doi: 10.1111/j.1551-2916.2008.02746.x CrossRefGoogle Scholar
  17. 17.
    Gerendás M, Cadoret Y, Wilhelmi C, Machry T, Knoche R, Behrendt T, Aumeier T, Denis S, Göring J, Koch D, Tushtev K (2011) In: ASME Turbo Expo 2011, Vancouver, 06-10-Juni 2011. ASME, p 45460Google Scholar
  18. 18.
    Fischer WP, Ritter H (2012) In: 42nd International Conference on Environmental Systems. International Conference on Environmental Systems (ICES). American Institute of Aeronautics and Astronautics. doi:  10.2514/6.2012-3518
  19. 19.
    Casas L, Martinez-Esnaola JM (2004) Mater Sci Eng Struct Mater Prop Microstruct Process 368(1–2):139–144. doi: 10.1016/j.msea.2003.11.014 CrossRefGoogle Scholar
  20. 20.
    Weaver JH, Yang J, Evans AG, Zok FW (2008) Compos Sci Technol 68(1):10–16CrossRefGoogle Scholar
  21. 21.
    Kuntz M, Grathwohl G (2001) Adv Eng Mater 3(6):371–379. doi: 10.1002/1527-2648(200106)3:6<371:aid-adem371>;2-y CrossRefGoogle Scholar
  22. 22.
    Kuntz M (1996) Rißwiderstand keramischer Faserverbundwerkstoffe. Berichte aus der Werkstofftechnik. Shaker, AachenGoogle Scholar
  23. 23.
    Zok F, Sbaizero O, Hom CL, Evans AG (1991) Mode I fracture resistance of a laminated fiber-reinforced ceramic. J Am Ceram Soc 74(1):187–193. doi: 10.1111/j.1151-2916.1991.tb07316.x CrossRefGoogle Scholar
  24. 24.
    Munz D, Fett T (1999) Ceramics—mechanical properties, failure behaviour, materials selection, vol B 125. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  25. 25.
    Presser V, Nickel KG (2008) Crit Rev Solid State Mater Sci 33(1):1–99. doi: 10.1080/10408430701718914 CrossRefGoogle Scholar
  26. 26.
    Schmücker M, Flucht F, Schneider H (2001) In: Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites. Wiley, Weinheim, pp 73–78Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • E. Volkmann
    • 1
  • L. Lima Evangelista
    • 1
  • K. Tushtev
    • 1
  • D. Koch
    • 2
  • C. Wilhelmi
    • 3
  • K. Rezwan
    • 1
  1. 1.Advanced CeramicsUniversity of BremenBremenGermany
  2. 2.Ceramic Composite Structures, Institute of Structures and DesignGerman Aerospace CenterStuttgartGermany
  3. 3.EADS Innovation WorksMunichGermany

Personalised recommendations