Journal of Materials Science

, Volume 49, Issue 1, pp 347–352 | Cite as

Synthesis of ZnO nanorod arrays on Zn substrates by a gas–solution–solid method and their application as an ammonia sensor

  • Yongfu Qiu
  • Minlin Yang
  • Hongbo Fan
  • Yongjun Xu
  • Youyuan Shao
  • Xiaoxi Yang
  • Shihe Yang


The design of the 1D nano-structured material arrays on substrates is required for the development of conductivity sensors. A simple method, the so-called gas–solution–solid, has been developed to prepare ZnO nanorod arrays on Zn substrate. The method consists of putting Zn foils above an ammonia solution for about 24 h to obtain the aligned ZnO nanorods on substrates. The sizes of ZnO nanorod arrays could be controlled by adjusting the concentration of the ammonia–water solution and reaction time. Moreover, the growth mechanism of the nanorod arrays was studied and proposed. In the proposed mechanism, the Zn source from the Zn foil is first oxidized to ZnO and Zn2+ by oxygen. Then ZnO nanorod arrays are grown with the help of ammonia in the solution as a transporter of zinc ions. The nanorod arrays growth mechanism involves oxygen gas, ammonia solution, and Zn foil, and is, therefore, named as gas–solution–solid mechanism. Finally, the NH3 sensing properties were measured and the results showed that ZnO nano-array sensor has high sensitivity and reversibility for NH3 sensing at the room temperature and the sensitivity increases with increasing gas concentration.

Graphical Abstract


Ammonia Solution Nanorod Array Conductivity Sensor Nanorod Growth Increase Ammonia Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work described in this paper was supported by the National Natural Science Foundation of China (No. 51206029) and the National Basic Research Program of China (2010CB227306).

Supplementary material

10853_2013_7711_MOESM1_ESM.docx (39 kb)
Figure S1 Diagram for the gas sensitivity measurement apparatus


  1. 1.
    Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Science 300:1269PubMedCrossRefADSGoogle Scholar
  2. 2.
    Chen X, Wang ZL (2011) Adv Mater 23:873CrossRefGoogle Scholar
  3. 3.
    Cai WJ, Shimpi P, Jian DL, Gao PX (2010) J Mater Chem 20:5265CrossRefGoogle Scholar
  4. 4.
    Seo K, Yoon H, Ryu SW, Lee S, Jo Y, Jung MH, Kim J, Choi YK, Kim B (2010) ACS Nano 4:2569PubMedCrossRefGoogle Scholar
  5. 5.
    Qiu YC, Yan KY, Deng H, Yang SH (2012) Nano Lett 12:407PubMedCrossRefADSGoogle Scholar
  6. 6.
    Park WI, Yi GC, Kim M, Pennycook SJ (2002) Adv Mater 14:1841CrossRefGoogle Scholar
  7. 7.
    Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H (2002) Adv Funct Mater 12:323CrossRefGoogle Scholar
  8. 8.
    Yao BD, Chan YF, Wang N (2002) Appl Phys Lett 81:757CrossRefADSGoogle Scholar
  9. 9.
    Kong XY, Wang ZL (2003) Nano Lett 3:1625CrossRefADSGoogle Scholar
  10. 10.
    Greyson EC, Babayan Y, Odom TW (2004) Adv Mater 16:1348CrossRefGoogle Scholar
  11. 11.
    Park JY, Lee DJ, Kim SS (2005) Nanotechnology 16:2044PubMedCrossRefADSGoogle Scholar
  12. 12.
    Dinan B, Akbar SA (2009) Funct Mater Lett 2:87CrossRefGoogle Scholar
  13. 13.
    Shi HY, Hu B, Yu XC, Zhao RL, Ren XF, Liu SL, Liu JW, Feng M, Xu AW, Yu SH (2010) Adv Funct Mater 20:958CrossRefGoogle Scholar
  14. 14.
    Yu W, Fang PF, Wang SJ (2009) Appl Surf Sci 255:5709CrossRefADSGoogle Scholar
  15. 15.
    Wang WC, Tian YT, Wang XC, He H, Xu YR, He C, Li XJ (2013) J Mater Sci 48:3232CrossRefADSGoogle Scholar
  16. 16.
    Wahab R, Kim YS, Lee K, Shin HS (2010) J Mater Sci 45:2967CrossRefADSGoogle Scholar
  17. 17.
    Fitch A, Strandwitz NC, Brunschwig BS, Lewis NS (2013) J Phys Chem C 117:2008CrossRefGoogle Scholar
  18. 18.
    Yang YQ, Yang YQ, Wu HX, Guo SW (2013) Cryst Eng Comm 15:2608CrossRefGoogle Scholar
  19. 19.
    Wang YX, Hou ZQ, Guo H, Shen LH, Wang GX, Cui F, Zhang QQ (2013) Mater Lett 91:107CrossRefGoogle Scholar
  20. 20.
    Ding JX, Zapian JA, Chen WW, Lifshitz Y, Lee ST (2004) Appl Phys Lett 85:2361CrossRefADSGoogle Scholar
  21. 21.
    Liang YQ, Zhen CG, Zou DC, Xu DS (2004) J Am Chem Soc 126:16338PubMedCrossRefGoogle Scholar
  22. 22.
    Mu C, Yu YX, Wang RW, Wu K, Xu DS (2004) Adv Mater 16:1550CrossRefGoogle Scholar
  23. 23.
    Wang Q, Sun X, Luo SJ, Sun LN, Wu XL, Cao MH, Hu CW (2007) Cryst Growth Design 7:2665CrossRefGoogle Scholar
  24. 24.
    Shi KY, Chi YJ, Yu HT, Xin BF, Fu HG (2005) J Phys Chem B 109:2546PubMedCrossRefGoogle Scholar
  25. 25.
    Fang YP, Pang Q, Wen XG, Wang JN, Yang SH (2006) Small 2:612PubMedCrossRefGoogle Scholar
  26. 26.
    Yang JH, Liu GM, Lu J, Qiu YF, Yang SH (2007) Appl Phys Lett 90:103109CrossRefADSGoogle Scholar
  27. 27.
    Xu CK, Shin P, Cao LL, Gao D (2010) J Phys Chem C 114:125CrossRefGoogle Scholar
  28. 28.
    Aspar B, Rodriguez-Clemente R, Figueras A, Armas B, Combescure C (1993) J Cryst Grow 129:56CrossRefADSGoogle Scholar
  29. 29.
    Zhang LX, Yin YY (2013) Sens Actuators, B 183:110CrossRefGoogle Scholar
  30. 30.
    Rai P, Raj S, Ko KJ, Park KK, Yu YT (2013) Sens Actuators, B 178:107CrossRefGoogle Scholar
  31. 31.
    Zhou Q, Chen WG, Xu LN, Peng SD (2013) Sensors 13(5):6171PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Wen XG, Fang YP, Pang Q, Yang CL, Wang JN, Ge WK, Wong KS, Yang SH (2005) J Phys Chem B 109:15303PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yongfu Qiu
    • 1
  • Minlin Yang
    • 1
  • Hongbo Fan
    • 1
  • Yongjun Xu
    • 1
  • Youyuan Shao
    • 1
  • Xiaoxi Yang
    • 1
  • Shihe Yang
    • 2
  1. 1.Guangdong Provincial Key Laboratory of Distributed Energy Systems, College of Chemistry and Environmental EngineeringDongguan University of TechnologyGuangdongPeople’s Republic of China
  2. 2.Department of ChemistryThe Hong Kong University of Science and TechnologyKowloonPeople’s Republic of China

Personalised recommendations