Journal of Materials Science

, Volume 49, Issue 1, pp 232–242 | Cite as

Adsorption kinetics, isotherm, and thermodynamics of Hg2+ to polyaniline/hexagonal mesoporous silica nanocomposite in water/wastewater



A nanocomposite of polyaniline/hexagonal mesoporous silica (PAN/HMS) was prepared and characterized by BET analysis, transmission electron microscopy, and FT-IR spectra. Batch adsorption results showed that PAN/HMS had high affinity to Hg2+ in aqueous solutions. Various factors affecting the adsorption capacity such as contact time, temperature, absorbent dosage, pH, and initial concentration of Hg2+ ions were investigated. The adsorption kinetics for the Hg2+ showed that the adsorption reached equilibrium within 8 min and adsorption rates followed the pseudo-second-order rate law, indicating chemical sorption as the rate-limiting step of the adsorption mechanism. Sorption of Hg2+ to PAN/HMS agreed well to the Langmuir adsorption model at different ionic strengths with the maximum adsorption capacity of 843 mg g−1 (I = 1000 mg L−1) at pH 10. Thermodynamic studies revealed that the adsorption of Hg2+ ions was spontaneous, exothermic processes with an increase of entropy. The recovery of the Hg2+ from the adsorbent was found to be more than 88 % using H2SO4 (0.1 M), and the ability of the absorbent to be reused was investigated.


Adsorption Capacity Removal Efficiency Differential Scanning Calorimeter Mesoporous Silica Adsorbent Dosage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chasar LC, Scudder BC, Stewart AR, Bell AH, Aiken GR (2009) Environ Sci Technol 43:2733PubMedCrossRefADSGoogle Scholar
  2. 2.
    Berglund F, Bertin M (1969) Chemical fallout. Thomas Publishers, SpringfieldGoogle Scholar
  3. 3.
    Krishnamoorthi CR, Vishwanathan P (1991) Toxic metal in the Indian environment. Tata McGraw-Hill Publishing Co Ltd., New DelhiGoogle Scholar
  4. 4.
    Oehmen A, Fradinho J, Serra S, Carvalho G, Capelo JL, Velizarov S, Crespo JG, Reis MAM (2009) J Hazard Mater 165:1040PubMedCrossRefGoogle Scholar
  5. 5.
    Mohsen-Nia M, Montazeri P, Modarress H (2007) Desalination 217:276CrossRefGoogle Scholar
  6. 6.
    Mauchauffée S, Meux E (2007) Chemosphere 69:763PubMedCrossRefGoogle Scholar
  7. 7.
    Barron-Zambrano J, Laborie S, Viers P, Rakib M, Durand G (2004) J Membr Sci 229:179CrossRefGoogle Scholar
  8. 8.
    Anirudhan TS, Divya L, Ramachandran M (2008) J Hazard Mater 157:620PubMedCrossRefGoogle Scholar
  9. 9.
    Li Z, Wei Q, Yuan R, Zhou X, Liu H, Shan H, Song Q (2007) Talanta 71:68PubMedCrossRefGoogle Scholar
  10. 10.
    El Samrani A, Lartiges B, Villiéras F (2008) Water Res 42:951PubMedCrossRefGoogle Scholar
  11. 11.
    Liu X, Qi C, Bing T, Cheng X, Shangguan D (2009) Talanta 78:253PubMedCrossRefGoogle Scholar
  12. 12.
    Rae IB, Gibb SW, Lu S (2009) J Hazard Mater 164:1601PubMedCrossRefGoogle Scholar
  13. 13.
    Gupta VK, Ali I (2004) J Colloid Interface Sci 271:321PubMedCrossRefGoogle Scholar
  14. 14.
    Gupta VK, Ali I (2006) Adsorbents for water treatment: development of low-cost alternatives to carbon, encyclopedia of surface and colloid science, 2nd edn. Taylor & Francis, New York, pp 149–184Google Scholar
  15. 15.
    Manchester S, Wang X, Kulaots I, Gao Y, Hurt RH (2008) Carbon 46:518PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Wang S, Wu H (2006) J Hazard Mater 136:482PubMedCrossRefGoogle Scholar
  17. 17.
    Sari A, Tuzen M (2009) J Hazard Mater 171:500PubMedCrossRefGoogle Scholar
  18. 18.
    Sheela T, Nayaka YA, Viswanatha R, Basavanna S, Venkatesha T (2012) Powder Technol 217:163CrossRefGoogle Scholar
  19. 19.
    Belyakova LA, Shvets OM, DYe Lyashenko (2009) Inorg Chim Acta 362:2222CrossRefGoogle Scholar
  20. 20.
    El-Safty S (2009) J Mater Sci 44:6764. doi: 10.1007/s10853-009-3577-6 CrossRefADSGoogle Scholar
  21. 21.
    Li Q, Sun L, Zhang Y, Qian Y, Zhai J (2011) Desalination 266:188CrossRefGoogle Scholar
  22. 22.
    Edler KJ, Reynolds PA, Branton PJ, Trouw FR, White JW (1997) J Chem Soc, Faraday Trans 93:1667CrossRefGoogle Scholar
  23. 23.
    He Y (2005) Mater Chem Phys 92:134CrossRefADSGoogle Scholar
  24. 24.
    Liu P (2008) Curr Opin Solid State Mater Sci 12:9CrossRefADSGoogle Scholar
  25. 25.
    Bhaumik M, Maity A, Srinivasu V, Onyango MS (2012) Chem Eng J 181:323CrossRefGoogle Scholar
  26. 26.
    Tanev PT, Pinnavaia TJ (1995) Science 267:865Google Scholar
  27. 27.
    Léonard A, Blin JL, Jacobs PA, Grange P, Su BL (2003) Microporous Mesoporous Mater 63:59CrossRefGoogle Scholar
  28. 28.
    Chen C-Y, Lin M-S, Hsu K-R (2008) J Hazard Mater 152:986PubMedCrossRefGoogle Scholar
  29. 29.
    Monier M, Ayad DM, Sarhan AA (2010) J Hazard Mater 176:348PubMedCrossRefGoogle Scholar
  30. 30.
    Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H (2009) Carbohydr Polym 75:110CrossRefGoogle Scholar
  31. 31.
    Dinu MV, Dragan ES (2008) React Funct Polym 68:1346CrossRefGoogle Scholar
  32. 32.
    Zhou Y, Jin Q, Hu X, Zhang Q, Ma T (2012) J Mater Sci 47:5019. doi: 10.1007/s10853-012-6378-2 CrossRefADSGoogle Scholar
  33. 33.
    Alkan M, Doğan M (2001) J Colloid Interface Sci 243:280CrossRefGoogle Scholar
  34. 34.
    Temkin M, Pyzhev V (1940) Acta Physiochim USSR 12:217Google Scholar
  35. 35.
    Dubinin MM, Radushkevich LV (1947) Proc Acad Sci USSR Phys Chem Sect 55:331–333Google Scholar
  36. 36.
    Kumar PA, Chakraborty S, Ray M (2008) Chem Eng J 141:130CrossRefGoogle Scholar
  37. 37.
    Hasan S, Krishnaiah A, Ghosh TK, Viswanath DS, Boddu VM, Smith ED (2006) Ind Eng Chem Res 45:5066CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hamedreza Javadian
    • 2
  • Mousa Ghaemy
    • 1
  • Mehdi Taghavi
    • 1
  1. 1.Polymer Chemistry Research Laboratory, Department of ChemistryUniversity of MazandaranBabolsarIran
  2. 2.Department of Chemical EngineeringIslamic Azad University, Shahrood BranchShahroodIran

Personalised recommendations