Journal of Materials Science

, Volume 49, Issue 1, pp 1–17 | Cite as

Review: tailoring the properties of macroporous carbon foams

  • Bogumiła Nagel
  • Sławomira Pusz
  • Barbara Trzebicka


Carbon foams are non-toxic, highly porous, light materials which demonstrate a wide range of properties. That fact allows carbon foams to be applied in many areas of life, ranging from electronics industry, through machinery, car and construction industry, to environmental protection. The properties of carbon foams are closely connected with their density, and its value is especially influenced by their internal structure, i.e. mainly size and number of pores, pore wall thickness and structural order of solid matrix. That is why it is possible to design the properties of carbon foams by controlling their growth. The main control factors are selecting the suitable raw material, the process parameters (temperature and pressure) and the suitable production method. Additionally, the properties of carbon foams may be modified by doping them with carbon or mineral fillers. The second method is the enrichment of carbon matrix with heteroatoms, mainly of boron and nitrogen. This paper presents the review of the possibilities of tailoring the structure and properties of carbon foams, based on the current level of knowledge available in the literature.


Foam Boron Compressive Strength Softening Temperature Furfuryl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ford WD (1964) Method of making of cellular refractory thermal insulating materials. US Patent 3121050Google Scholar
  2. 2.
    Miller DJ, Lewis IC, Shao RL, Yazici MS (2010) Irradiaton effects on graphite foam reinforced resin-derived carbon foam. US Patent 7758779Google Scholar
  3. 3.
    Wang X, Zhong J, Wang J, Yu M (2006) Carbon 44:1560CrossRefGoogle Scholar
  4. 4.
    Luo R, Ni Y, Li J, Yang C, Wang S (2011) Mat Sci Eng A 528:2023CrossRefGoogle Scholar
  5. 5.
    Wang S, Luo R, Ni Y (2010) Mat Sci Eng A 527:3392CrossRefGoogle Scholar
  6. 6.
    Wu X, Liu Y, Fang M, Mei L, Luo B (2011) Carbon 49:1782CrossRefGoogle Scholar
  7. 7.
    Googin JM, Napier JM, Scrivner ME (1967) Method of manufacturing foam carbon products. US Patent 3345440Google Scholar
  8. 8.
    Duffy AJ, Kaplan RB, Racik SA, Stankiewicz EP, Tuffias RH, Wiliams BE (1994) Filter and method of foaming. US Patent 5,372,380Google Scholar
  9. 9.
    Fay TF, Ferla RL, Sherman AJ, Stankiewicz EP (2000) Foam catalyst support for exhaust purification. US Patent 6,040,266Google Scholar
  10. 10.
    Stankiewicz EH (2000) US patent 6:103Google Scholar
  11. 11.
    Inagaki M, Morishita T, Kuno A, Kito T, Hirano M, Suwa T, Kusakawa K (2004) Carbon 42:497CrossRefGoogle Scholar
  12. 12.
    Chen Y, Chen BZ, Shi XC, Xu H, Hu YJ, Yuan Y, Shen NB (2007) Carbon 45:2126CrossRefGoogle Scholar
  13. 13.
    Joseph BE, Rogers DK (2005) Composite tooling. US Patent 6849098 B1Google Scholar
  14. 14.
    Rogers DK, Płuciński JW (2005) Reinforced designed cellular coal. US Patent 6861151 B1Google Scholar
  15. 15.
    Chen C, Kennel EB, Stiller AH, Stansberry PG, Zondlo JW (2006) Carbon 44:1535CrossRefGoogle Scholar
  16. 16.
    Stiler AH, Stansberry PG, Zondlo JW (2002) Method of making carbon foam material and resultant product. US Patent 6,346,226 B1Google Scholar
  17. 17.
    Klett JW (2001) Pitch-Based carbon foam and composites. US Patent 6261485Google Scholar
  18. 18.
    Calvo M, Garcia R, Arenillas A, Suarez I, Moinelo SR (2005) Fuel 84:2184CrossRefGoogle Scholar
  19. 19.
    Klett JW, Burchell, Choundhury (2004) Pitch-based carbon foam and composites and used thereof. US Patent 6673328Google Scholar
  20. 20.
    Kalback WM, Romine E, Bouratt XM (1993) Solvated mesophase pitches. US Patent 5,259,947Google Scholar
  21. 21.
    Klett JW (2000) Process for making carbon foam. US Patent 3914392Google Scholar
  22. 22.
    Meikleham N, Pizzi A (1994) J Appl Polym Sci 53:1547CrossRefGoogle Scholar
  23. 23.
    Tondi G, Pizzi A, Pasch H, Celzard A (2008) Polym Degrad Stab 93:968CrossRefGoogle Scholar
  24. 24.
    Tondi G, Pizzi A, Masson E, Celzard A (2008) Polym Degrad Stab 93:1539CrossRefGoogle Scholar
  25. 25.
    Tondi G, Pizzi A, Pasch H, Celzard A, Rode K (2008) Eur Polym J 44:2938CrossRefGoogle Scholar
  26. 26.
    Tondi G, Pizzi A (2009) Ind Crop Prod 29(1–2):356CrossRefGoogle Scholar
  27. 27.
    Tondi G, Pizzi A, Delmotte L, Parmentier J, Gadiou R (2010) Ind Crop Prod 31:327CrossRefGoogle Scholar
  28. 28.
    Lacoste C, Basso MC, Pizzi A, Laborie MP, Celzard A, Fierro V (2013) Ind Crop Prod 43:245CrossRefGoogle Scholar
  29. 29.
    Li X, Basso MC, Braghiroli FL, Fierro V, Pizzi A, Celzadr A (2012) Carbon 50:2026CrossRefGoogle Scholar
  30. 30.
    Tondi G, Zhao W, Pizzi A, Du G, Fierro V, Celzard A (2009) Biores Technol 100:5162CrossRefGoogle Scholar
  31. 31.
    Zhao W, Pizzi A, Fierro V, Du G, Celzard A (2010) Mater Chem Phys 122:175CrossRefGoogle Scholar
  32. 32.
    Zhao W, Pizzi A, Fierro V, Du G, Celzard A (2010) Mater Chem Phys 123:210CrossRefGoogle Scholar
  33. 33.
    Tondi G, Fierro V, Pizzi A, Celzard A (2009) Carbon 47:1480CrossRefGoogle Scholar
  34. 34.
    Li X, Pizzi A, Cangemi M, Navarrete P, Segovia C, Fierro V, Celzard A (2012) Ind Crop prod 37:149CrossRefGoogle Scholar
  35. 35.
    Li X, Pizzi A, Cangemi M, Fierro V, Celzard A (2012) Ind Crop Prod 37:389CrossRefGoogle Scholar
  36. 36.
    Li X, Srivastava VK, Pizzi A, Celzard A, Leban J (2013) Ind Crop Prod 43:636CrossRefGoogle Scholar
  37. 37.
    Wang R, Li W, Liu S (2012) J Mater Sci 47:1977. doi: 10.1007/s10853-011-5993-7 CrossRefADSGoogle Scholar
  38. 38.
    Narasimman R, Prabhakaran K (2012) Carbon 50:1999CrossRefGoogle Scholar
  39. 39.
    Prabhakaran K, Singh PK, Gokhale NM, Sharma SC (2007) J Mater Sci 42:3894. doi: 10.1007/s10853-006-0481-1 CrossRefADSGoogle Scholar
  40. 40.
    Narasimman R, Prabhakaran K (2012) Carbon 50:5583CrossRefGoogle Scholar
  41. 41.
    Liu S, Huang Z, Wang R (2013) Mat Res Bull 48:2437CrossRefGoogle Scholar
  42. 42.
    Klett J (2005) In: Scheffler M, Colombo P (eds) Cellular ceramics: structure, manufacturing, properties and applications. Wiley, Weinheim, p 137Google Scholar
  43. 43.
    Heine T, Zhechkov L, Patchkovski (2007) SPIE Newsroom. doi: 10.1117/2.1200704.0714 Google Scholar
  44. 44.
    Klett JW, Hardy R, Romine E, Walls CA, Burchell TD (2000) Carbon 38:953CrossRefGoogle Scholar
  45. 45.
    Klett JW, McMillan Gallego NC, Burchell TD, Walls CA (2004) Carbon 42:1849CrossRefGoogle Scholar
  46. 46.
    Tsyntsarski B, Petrova B, Budinova T, Petrov N, Krzesinska M, Pusz S, Majewska J, Tzvetkov P (2010) Carbon 48:3523CrossRefGoogle Scholar
  47. 47.
    Wang MX, Wang CY, Li TQ, Hu ZJ (2008) Carbon 46:84CrossRefGoogle Scholar
  48. 48.
    Wang MX, Wang CY, Chen MM, Li TQ, Hu ZJ (2009) New Carbon Mater 24:321CrossRefGoogle Scholar
  49. 49.
    Fawcett W, Shetty DK (2010) Carbon 48:68CrossRefGoogle Scholar
  50. 50.
    van Krevelen DW (1993) Typology-physics-chemistry-constitution. Elsevier, AmsterdamGoogle Scholar
  51. 51.
    Min Z, Cao M, Zhang S, Wang X, Wang Y (2007) New Carbon Mater 22:75CrossRefGoogle Scholar
  52. 52.
    Wang Y, Min Z, Cao M, Xu D (2009) New Carbon Mater 24:321CrossRefGoogle Scholar
  53. 53.
    Stiller AH, Yocum A, Plucinski J (2001) Method of making a reinforced carbon foam material and related product. US Patent 6183854Google Scholar
  54. 54.
    Rios RVRA, Martinez-Escandell M, Molina-Sabio M, Rodriguez-Reinoso F (2006) Carbon 44:1448CrossRefGoogle Scholar
  55. 55.
    Petrova B, Budinova T, Petrov N, Yardim MF, Ekinci E, Razvigorova M (2005) Carbon 43:261CrossRefGoogle Scholar
  56. 56.
    Tsyntsarski B, Petrova B, Budinova T, Petrov N, Velasco LF, Parra JB, Ania CO (2012) Microporous Mesoporous Mater 154:56CrossRefGoogle Scholar
  57. 57.
    Velasco LF, Tsyntsarski B, Petrova B, Budinowa T, Petrov N, Parra JB, Ania CO (2012) J Hazard Mater 184:843CrossRefGoogle Scholar
  58. 58.
    Lei S, Guo Q, Shi J, Liu L (2010) Carbon 48:2644CrossRefGoogle Scholar
  59. 59.
    Gebhart JJ, Juneau PJ Jr (1984) Low density thermally insulating carbon–carbon syntactic foam composite. US Patent 4442165Google Scholar
  60. 60.
    Abrams FL, Hager JW, Hall RB (1998) Carbon or Graphite foam reinforced composites. US Patent 5770127Google Scholar
  61. 61.
    Li WQ, Zhang HB, Xiong X, Xiao F (2011) Mat Sci Eng A 528:2999CrossRefGoogle Scholar
  62. 62.
    Zhang L, Ma J (2009) Carbon 47:1451CrossRefGoogle Scholar
  63. 63.
    Wang X, Luo R, Ni Y, Zhang R, Wang S (2009) Mater Lett 63:25CrossRefGoogle Scholar
  64. 64.
    Mayer ST, Pekala RW, Morrison RL, Kaschmitter L (1994) Doping of carbon foams for use in energy storage devices. US Patent 5358802Google Scholar
  65. 65.
    Allardice DJ, Walker PL Jr (1970) Carbon 8:375CrossRefGoogle Scholar
  66. 66.
    Tanaka U, Sogabe T, Sakagoshi H, Ito M, Tojo T (2001) Carbon 39:931CrossRefGoogle Scholar
  67. 67.
    Paul R, Voevodin AA, Zemlyanov D, Roy AJ, Fisher TS (2012) Adv Funct Mater 22:3682CrossRefGoogle Scholar
  68. 68.
    Rodriguez E, Camean I, Garcia R, Garcia AB (2011) Electrochim Acta 56:5090CrossRefGoogle Scholar
  69. 69.
    Rodriguez E, Garcia R (2012) Fuel 93:288CrossRefGoogle Scholar
  70. 70.
    Kodama M, Yamashita J, Soneda Y, Hatori H, Kamegawa K (2007) Carbon 45:1105CrossRefGoogle Scholar
  71. 71.
    Paul R, Voevodin AA, Hu PB, Amama PB, Ganguli S, Roy AK, Zemlyanov D, Fisher TS (2013) Thin Solid Film 528:187CrossRefADSGoogle Scholar
  72. 72.
    Li WQ, Zhang HB, Xiong X, Xiao F (2010) Mat Sci Eng A527:2993CrossRefGoogle Scholar
  73. 73.
    Lafdi K, Almajali M, Huzayyin O (2009) Carbon 47:2620CrossRefGoogle Scholar
  74. 74.
    Almajali M, Lafdi K, Prodhomme PH, Ochoa O (2010) Carbon 48:1604CrossRefGoogle Scholar
  75. 75.
    Almajali M, Lafdi K (2010) Carbon 48:4238CrossRefGoogle Scholar
  76. 76.
    Almajali M, Lafdi K, Prodhomme PH (2013) Energy Convers Manag 66:336CrossRefGoogle Scholar
  77. 77.
    Yo Q, Straatman AG, Thompson BE (2006) Therm Eng 26:131CrossRefGoogle Scholar
  78. 78.
    Frackowiak E, Kierzek K, Lota G, Machnikowski J (2008) J Phys Chem Solids 69:1179CrossRefADSGoogle Scholar
  79. 79.
    Lv YK, Feng YL, Gan LH, Liu MX, Xu L, Liu C, Zheng HW, Li J (2012) J Solid State Chem 185:198CrossRefADSGoogle Scholar
  80. 80.
    He X, Tang Z, Zhu Y, Yang J (2013) Mat Lett 94:55CrossRefADSGoogle Scholar
  81. 81.
    He X, Zhou X, Su B (2009) Mater Lett 63:830CrossRefGoogle Scholar
  82. 82.
    Fan Z, Qi D, Xiao Y, Yan J, Wei T (2013) Mat Lett 101:29CrossRefADSGoogle Scholar
  83. 83.
    Celzard A, Tondi G, Lacroix D, Jeandel G, Monod B, Fierro V, Pizzi A (2012) Carbon 50:4102CrossRefGoogle Scholar
  84. 84.
    Amaral-Labat G, Gourdon E, Fierro V, Pizzi A, Celzard A (2013) Carbon 58:76CrossRefGoogle Scholar
  85. 85.
    Gallego NC, Klett JW (2003) Carbon 41:1461CrossRefGoogle Scholar
  86. 86. Accessed 20 Feb 2013
  87. 87.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bogumiła Nagel
    • 1
  • Sławomira Pusz
    • 1
  • Barbara Trzebicka
    • 1
  1. 1.Centre of Polymer and Carbon MaterialsPolish Academy of SciencesZabrzePoland

Personalised recommendations