Journal of Materials Science

, Volume 49, Issue 1, pp 88–93 | Cite as

Rashba spin−orbit coupling effect on tunneling time in semiconductor spintronic junctions

  • S. M. Mirzanian
  • A. A. Shokri
  • S. M. Elahi


Based on the transfer-matrix method and the group velocity concept, we investigate theoretically the spin tunneling time through single and double barriers of diluted magnetic semiconductor structures in the presence of the Rashba spin−orbit coupling (RSOC) effect. The calculation of transmission probability is based on an effective mass quantum-mechanical approach in the presence of an external magnetic field applied along the growth direction of the junction. The results show that the RSOC has great different influence on spin-dependent tunneling time of electrons with spin up and spin down in these structures. We also study the effect of zero-field conduction band offset on spin-dependent transmission properties. It is found that in the presence of RSOC and a positive zero-field conduction band offset as high as 10 meV, the results show a high degree of spin polarization and spin separation in the tunneling time in the considered system and this aspect may be utilized in designing new spin filter devices.


Spin Polarization Dilute Magnetic Semiconductor Tunneling Time Rashba Spin Double Barrier Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of us (A. A. Shokri) would like to thank the Payame Noor University (PNU) for supporting us with a grant.


  1. 1.
    Awschalom DD, Kikkawa JM (1999) Phys Today 52:33CrossRefGoogle Scholar
  2. 2.
    Prinz G (1995) Phys Today 48:58CrossRefGoogle Scholar
  3. 3.
    Ohno Y, Young DK, Beschoten B, Matsukura F, Ohno H, Awschalom DD (1999) Nature (Lond) 402:790CrossRefADSGoogle Scholar
  4. 4.
    Awschalom DD, Loss D, Samarth N (2002) Semiconductor spintronics and quantum computation. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Moodera JS, Kinder LR, Wong TM, Meservey R (1995) Phys Rev Lett 74:3273PubMedCrossRefADSGoogle Scholar
  6. 6.
    Egues JC (1998) Phys Rev Lett 80:4578CrossRefADSGoogle Scholar
  7. 7.
    Zhu ZG, Su G (2004) Phys Rev B 70:193310CrossRefADSGoogle Scholar
  8. 8.
    Guo Y, Wang H, Gu BL, Kawazoe Y (2000) J Appl Phys 88:6614CrossRefADSGoogle Scholar
  9. 9.
    Shokri AA (2010) Int J Nanoparticles 3:14CrossRefGoogle Scholar
  10. 10.
    Papp G, Borza S, Peeters FM (2005) J Appl Phys 97:113901CrossRefADSGoogle Scholar
  11. 11.
    Chang K, Xia JB, Peeters FM (2002) Phys Rev B 65:155211CrossRefADSGoogle Scholar
  12. 12.
    Guo Y, Gu BL, Wang H, Kawazoe Y (2001) Phys Rev B 63:214415CrossRefADSGoogle Scholar
  13. 13.
    Guo Y, Wang B, Gu BL, Kawazoe Y (2001) Phys Lett A 291:453CrossRefADSGoogle Scholar
  14. 14.
    Guo Y, Wang B, Gu BL, Kawazoe Y (2001) Eur Phys J B 23: 509CrossRefADSGoogle Scholar
  15. 15.
    Guo Y, Shang CE, Chen XY (2005) Phys Rev B 72:045356CrossRefADSGoogle Scholar
  16. 16.
    Zhai F, Guo Y, Gu BL (2002) Eur Phys J B 29:147CrossRefADSGoogle Scholar
  17. 17.
    Wang B, Guo Y, Gu BL (2002) J Appl Phys 91:1318CrossRefADSGoogle Scholar
  18. 18.
    Saffarzadeh A, Daqiq R (2009) J Appl Phys 106:084308CrossRefADSGoogle Scholar
  19. 19.
    Gui YS, Becker CR, Liu J, Daumer V, Hock V, Buhmann H, Molenkamp LW (2004) Europhys Lett 65:393CrossRefADSGoogle Scholar
  20. 20.
    Gnanasekar K, Navaneethakrishnan K (2006) Phys E 35:103CrossRefADSGoogle Scholar
  21. 21.
    Cai L, Tao YC, Hu JG, Jin G (2008) J Phys Lett A 372:5361CrossRefMATHADSGoogle Scholar
  22. 22.
    Vali R, Mirzanian SM (2009) Solid State Commun 149:2032CrossRefADSGoogle Scholar
  23. 23.
    Zhang YT, Li YC (2006) J Appl Phys 99:013907CrossRefADSGoogle Scholar
  24. 24.
    Furdyna JK (1988) J Appl Phys 64:R29CrossRefADSGoogle Scholar
  25. 25.
    Das B, Datta S, Reifenberger R (1990) Phys Rev B 41:8278CrossRefADSGoogle Scholar
  26. 26.
    Mirzanian SM, Shokri AA (2013) Physica E 54:59Google Scholar
  27. 27.
    landauer R, Martin T (1994) Rev Mod Phys 66:217CrossRefADSGoogle Scholar
  28. 28.
    Dragoman D (1997) Opt Quantum Electron 29:79CrossRefGoogle Scholar
  29. 29.
    Nitta J, Akazaki T, Takayanagi H, Enoki T (1997) Phys Rev Lett 78:1335CrossRefADSGoogle Scholar
  30. 30.
    Heida JP, Van Wees BJ, Kuipers JJ, Klapwijik TM, Borghs G (1998) Phys Rev B 57:11911CrossRefADSGoogle Scholar
  31. 31.
    Grundler D (2000) Phys Rev Lett 84:6074PubMedCrossRefADSGoogle Scholar
  32. 32.
    Hashimzadeh FM, Babayev AM, Mehdiyev BH (2006) Phys Rev B 73:245321CrossRefADSGoogle Scholar
  33. 33.
    Chang K, Xia JB, Peeters FM (2002) Phys Rev B 65:115209CrossRefADSGoogle Scholar
  34. 34.
    Gaj JA, Gatazka RR, Nawrocki M (1978) Solid State Commun 25:193CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Plasma Physics Research Center, Science and Research Branch Islamic Azad universityTehranIran
  2. 2.Department of PhysicsPayame Noor UniversityTehranIran

Personalised recommendations