Journal of Materials Science

, Volume 48, Issue 24, pp 8337–8353 | Cite as

Advances in fabrication of TiO2 nanofiber/nanowire arrays toward the cellular response in biomedical implantations: a review

  • Ai Wen Tan
  • Belinda Pingguan-Murphy
  • Roslina Ahmad
  • Sheikh Ali Akbar


The nanotopography of biomedical implants is known to play a pivotal role in the cell–implant interactions for successful clinical implantations. Recently, due to the morphological similarity to natural extracellular matrix, titania (TiO2) nanofibers/nanowires have shown great promise as a preferred platform in the field of biomedical implants. In this study, we first review recent progress pertaining to fabrication techniques for producing TiO2 nanofibrous surface topographies. Subsequently, we outline the effect of this on cellular response, using several examples of current in vitro studies, noting that these remarkable results greatly support the potential use of such a surface as a substrate for implantation. However, further in vitro and in vivo studies will be required to realize their full potential in clinical use. Finally, we anticipate that the future direction in this field will be shaped by better analysis and understanding of cellular interactions with TiO2 nanowires/nanofibers surface structure.


TiO2 Simulated Body Fluid Titanium Foil TiO2 Nanofiber Nanofibrous Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from the Ministry of Higher Education Malaysia (UM.C/HIR/MOHE/ENG/44) and Postgraduate Research Fund (Project No. PV102/2012A).


  1. 1.
    Brammer KS, Frandsen CJ, Jin S (2012) Trends Biotechnol 30:315Google Scholar
  2. 2.
    Brammer KS, Choi C, Frandsen CJ, Oh S, Jin S (2011) Acta Biomater 7:683Google Scholar
  3. 3.
    Zhang NA, Deng YL, Tai QD et al (2012) Adv Mater 24:2756Google Scholar
  4. 4.
    Lord MS, Foss M, Besenbacher F (2010) Nano Today 5:66Google Scholar
  5. 5.
    Webster TJ, Schadler LS, Siegel RW, Bizios R (2001) Tissue Eng 7:291Google Scholar
  6. 6.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) J Biomed Mater Res 51:475Google Scholar
  7. 7.
    Price RL, Gutwein LG, Kaledin L, Tepper F, Webster TJ (2003) J Biomed Mater Res–Part A 67:1284Google Scholar
  8. 8.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Biomaterials 21:1803Google Scholar
  9. 9.
    Balasundaram G, Sato M, Webster TJ (2006) Biomaterials 27:2798Google Scholar
  10. 10.
    Miyauchi T, Yamada M, Yamamoto A et al (2010) Biomaterials 31:3827Google Scholar
  11. 11.
    Mozumder MS, Zhu J, Perinpanayagam H (2011) Biomed Mater 6:035009Google Scholar
  12. 12.
    Dinan B, Gallego-Perez D, Lee H, Hansford D, Akbar SA (2013) Ceram Int 39:5949Google Scholar
  13. 13.
    Chen ZX, Takao Y, Wang WX, Matsubara T, Ren LM (2009) Biomed Mater 4:065003Google Scholar
  14. 14.
    Tavangar A, Tan B, Venkatakrishnan K (2011) Acta Biomater 7:2726Google Scholar
  15. 15.
    Wang X, Gittens RA, Song R et al (2012) Acta Biomater 8:878Google Scholar
  16. 16.
    Sheikh FA, Kanjwal MA, Kim HY, Kim H (2010) Appl Surf Sci 257:296Google Scholar
  17. 17.
    Lai YK, Pan F, Xu C, Fuchs H, Chi LF (2013) Adv Mater 25:1682Google Scholar
  18. 18.
    Ercan B, Taylor E, Alpaslan E, Webster TJ (2011) Nanotechnology 22:11Google Scholar
  19. 19.
    Azad AM, Hershey R, Ali S, Goel V (2010) J Mater Res 25:1761Google Scholar
  20. 20.
    Oh S, Brammer KS, Li YS et al (2009) Proc Natl Acad Sci USA 106:2130Google Scholar
  21. 21.
    Brammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, Jin S (2009) Acta Biomater 5:3215Google Scholar
  22. 22.
    Oh S, Brammer KS, Moon K-S, Bae J-M, Jin S (2011) Mater Sci Eng C 31:873Google Scholar
  23. 23.
    Ou H-H, Lo S-L (2007) Sep Purif Technol 58:179Google Scholar
  24. 24.
    Wong CL, Tan YN, Mohamed AR (2011) J Environ Manag 92:1669Google Scholar
  25. 25.
    Nathan S et al (2011) J Heat Transfer 133:034002Google Scholar
  26. 26.
    Tan AW, Pingguan-Murphy B, Ahmad R, Akbar SA (2012) Ceram Int 38:4421Google Scholar
  27. 27.
    Das K, Bose S, Bandyopadhyay A (2009) J Biomed Mater Res A 90:225Google Scholar
  28. 28.
    Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S (2006) J Biomed Mater Res A 78:97Google Scholar
  29. 29.
    Burns K, Yao C, Webster TJ (2009) J Biomed Mater Res Part A 88A:561Google Scholar
  30. 30.
    Brammer KS, Oh S, Frandsen CJ, Varghese S, Jin S (2010) Mater Sci Eng C 30:518Google Scholar
  31. 31.
    Smith BS, Yoriya S, Johnson T, Popat KC (2011) Acta Biomater 7:2686Google Scholar
  32. 32.
    Brammer KS, Oh S, Gallagher JO, Jin S (2008) Nano Lett 8:786Google Scholar
  33. 33.
    Peng L, Eltgroth ML, LaTempa TJ, Grimes CA, Desai TA (2009) Biomaterials 30:1268Google Scholar
  34. 34.
    Park J, Bauer S, von der Mark K, Schmuki P (2007) Nano Lett 7:1686Google Scholar
  35. 35.
    Popat KC, Leoni L, Grimes CA, Desai TA (2007) Biomaterials 28:3188Google Scholar
  36. 36.
    Christenson EM, Anseth KS, van den Beucken L et al (2007) J Orthop Res 25:11Google Scholar
  37. 37.
    Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2008) Biomed Mater 3:034002Google Scholar
  38. 38.
    Lu P, Ding B (2008) Nanotechnology 2:169Google Scholar
  39. 39.
    Yoo HS, Kim TG, Park TG (2009) Adv Drug Deliv Rev 61:1033Google Scholar
  40. 40.
    Yoshida R, Suzuki Y, Yoshikawa S (2005) J Solid State Chem 178:2179Google Scholar
  41. 41.
    Pramanik S, Pingguan-Murphy B, Abu Osman NA (2012) Sci Technol Adv Mater 13:043002Google Scholar
  42. 42.
    Price RL, Waid MC, Haberstroh KM, Webster TJ (2003) Biomaterials 24:1877Google Scholar
  43. 43.
    Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK (2009) J Biomater Appl 24:7Google Scholar
  44. 44.
    Chandrasekaran AR, Venugopal J, Sundarrajan S, Ramakrishna S (2011) Biomed Mater 6:015001Google Scholar
  45. 45.
    Ravichandran R, Liao S, Ng C, Chan CK, Raghunath M, Ramakrishna S (2009) World J Stem Cells 1:55Google Scholar
  46. 46.
    Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) J Appl Phys 102:111101Google Scholar
  47. 47.
    Stevens MM, George JH (2005) Science 310:1135Google Scholar
  48. 48.
    Chang CH, Lee HC, Chen CC et al (2012) J Biomed Mater Res Part A 100A:1687Google Scholar
  49. 49.
    Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S (2007) Prog Mater Sci 52:699Google Scholar
  50. 50.
    Yoo S, Akbar SA, Sandhage KH (2004) Adv Mater 16:260Google Scholar
  51. 51.
    Lee H, Dregia S, Akbar S, Alhoshan M (2010) J Nanomater 2010:503186Google Scholar
  52. 52.
    Bhardwaj N, Kundu SC (2010) Biotechnol Adv 28:325Google Scholar
  53. 53.
    Kao L-H, Lin H-K, Chuang F-J, Hsu W-T (2012) Mater Lett 82:64Google Scholar
  54. 54.
    Shin S-H, Purevdorj O, Castano O, Planell JA, Kim H-W (2012) J Tissue Eng. doi: 10.1177/2041731412443530 Google Scholar
  55. 55.
    Sill TJ, von Recum HA (2008) Biomaterials 29:1989Google Scholar
  56. 56.
    Cui WG, Zhou Y, Chang J (2010) Sci Technol Adv Mater 11:014108Google Scholar
  57. 57.
    Goh YF, Shakir I, Hussain R (2013) J Mater Sci 48:3027. doi: 10.1007/s13391-013-3089-z Google Scholar
  58. 58.
    Ding B, Kim CK, Kim HY, Se MK, Park SJ (2004) Fiber Polym 5:105Google Scholar
  59. 59.
    Li D, Xia Y (2003) Nano Lett 3:555Google Scholar
  60. 60.
    Lee J-S, Lee Y-I, Song H, Jang D-H, Choa Y-H (2011) Curr Appl Phys 11:S210Google Scholar
  61. 61.
    Nuansing W, Ninmuang S, Jarernboon W, Maensiri S, Seraphin S (2006) Mater Sci Eng B 131:147Google Scholar
  62. 62.
    Khalil KA, Kim SW, Kim KW, Dharmaraj N, Kim HY (2011) Int J Appl Ceram Technol 8:523Google Scholar
  63. 63.
    Lee S-J, Cho N-I, Lee DY (2007) J Eur Ceram Soc 27:3651Google Scholar
  64. 64.
    Wang XK, Zhu JX, Yin L et al (2012) J Nanomater 2012:959578Google Scholar
  65. 65.
    Lantelme B, Dumon M, Mai C, Pascault JP (1996) J Non-Cryst Solids 194:63Google Scholar
  66. 66.
    Park S-J, Chase G, Jeong K-U, Kim H (2010) J Sol-Gel Sci Technol 54:188Google Scholar
  67. 67.
    Chen J-Y, Chen H-C, Lin J-N, Kuo C (2008) Mater Chem Phys 107:480Google Scholar
  68. 68.
    Chandrasekar R, Zhang LF, Howe JY, Hedin NE, Zhang Y, Fong H (2009) J Mater Sci 44:1198. doi: 10.1007/s10853-008-3201-1 Google Scholar
  69. 69.
    He GF, Cai YB, Zhao Y et al (2013) J Colloid Interface Sci 398:103Google Scholar
  70. 70.
    Tavangar A, Tan B, Venkatakrishnan K (2013) J Appl Phys 113:023102Google Scholar
  71. 71.
    Gong D, Grimes CA, Varghese OK et al (2001) J Mater Res 16:3331Google Scholar
  72. 72.
    Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2005) Electrochem Commun 7:505Google Scholar
  73. 73.
    Bauer S, Kleber S, Schmuki P (2006) Electrochem Commun 8:1321Google Scholar
  74. 74.
    Lim JH, Choi J (2007) Small 3:1504Google Scholar
  75. 75.
    Xue C, Zhang F, Chen S, Yin Y, Lin C (2011) Mater Sci Semicond Process 14:157Google Scholar
  76. 76.
    Roy P, Berger S, Schmuki P (2011) Angew Chem-Int Edit 50:2904Google Scholar
  77. 77.
    Su ZX, Zhou WZ (2011) J Mater Chem 21:8955Google Scholar
  78. 78.
    Low IM, Yam FK, Pang WK (2012) Mater Lett 87:150Google Scholar
  79. 79.
    Yuan Z-Y, Zhou W, Su B-L (2002) Chem Commun 7(11):1202Google Scholar
  80. 80.
    Pavasupree S, Suzuki Y, Yoshikawa S, Kawahata R (2005) J Solid State Chem 178:3110Google Scholar
  81. 81.
    Liu B, Boercker JE, Aydil ES (2008) Nanotechnology 19:7Google Scholar
  82. 82.
    Wang H, Liu Y, Zhong MY, Xu HM, Huang H, Shen H (2011) J Nanopart Res 13:1855Google Scholar
  83. 83.
    Xiaobo C (2009) Chin J Catal 30:839Google Scholar
  84. 84.
    Liu HW, Waclawik ER, Zheng ZF et al (2010) J Phys Chem C 114:11430Google Scholar
  85. 85.
    Yin H, Ding G, Gao B, Huang F, Xie X, Jiang M (2012) Mater Res Bull 47:3124Google Scholar
  86. 86.
    Dong X, Li YY, Lin ZW, Ge J, Qiu JB (2013) Appl Surf Sci 270:457Google Scholar
  87. 87.
    Wang XD, Shi J (2013) J Mater Res 28:270Google Scholar
  88. 88.
    Chen CY, Ozasa K, Katsumata K, Maeda M, Okada K, Matsushita N (2012) J Phys Chem C 116:8054Google Scholar
  89. 89.
    Daothong S, Songmee N, Thongtem S, Singjai P (2007) Scripta Mater 57:567Google Scholar
  90. 90.
    Huo KF, Zhang XM, Fu JJ et al (2009) J Nanosci Nanotechnol 9:3341Google Scholar
  91. 91.
    Peng XS, Chen AC (2004) J Mater Chem 14:2542Google Scholar
  92. 92.
    BJ Dinan (2012) Growth of Titania Nanowires by Thermal Oxidation (Electronic Thesis or Dissertation). Accessed 25 Jul 2013
  93. 93.
    Lin Z, Lee IS, Choi YJ, Noh IS, Chung SM (2009) Biomed Mater 4:015013Google Scholar
  94. 94.
    Barreiro MM, Grana DR, Kokubu GA, Luppo MI, Mintzer S, Vigna G (2010) Biomed Mater 5(2):25010Google Scholar
  95. 95.
    Hanawa T (2012) Sci Technol Adv Mater 13:064102Google Scholar
  96. 96.
    Harcuba P, Bačáková L, Stráský J, Bačáková M, Novotná K, Janeček M (2012) J Mech Behav Biomed Mater 7:96Google Scholar
  97. 97.
    Wang XJ, Li YC, Lin JG, Yamada Y, Hodgson PD, Wen CE (2008) Acta Biomater 4:1530Google Scholar
  98. 98.
    Choi SW, Zhang Y, Thomopoulos S, Xia YN (2010) Langmuir 26:12126Google Scholar
  99. 99.
    Jonasova L, Muller FA, Helebrant A, Strnad J, Greil P (2004) Biomaterials 25:1187Google Scholar
  100. 100.
    de Jonge LT, Leeuwenburgh SCG, Wolke JGC, Jansen JA (2008) Pharm Res 25:2357Google Scholar
  101. 101.
    Han Y, Zhou JH, Zhang L, Xu KW (2011) Nanotechnology 22:11Google Scholar
  102. 102.
    Vasilev K, Poh Z, Kant K, Chan J, Michelmore A, Losic D (2010) Biomaterials 31:532Google Scholar
  103. 103.
    Chen X-B, Li Y-C, Hodgson PD, Wen C (2009) Acta Biomater 5:2290Google Scholar
  104. 104.
    Ma JY, He XZ, Jabbari E (2011) Ann Biomed Eng 39:14Google Scholar
  105. 105.
    Meinel AJ, Kubow KE, Klotzsch E et al (2009) Biomaterials 30:3058Google Scholar
  106. 106.
    Murugan R, Ramakrishna S (2007) Tissue Eng 13:1845Google Scholar
  107. 107.
    Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD (2007) Biomaterials 28:2821Google Scholar
  108. 108.
    Zinger O, Zhao G, Schwartz Z et al (2005) Biomaterials 26:1837Google Scholar
  109. 109.
    Chen SJ, Yu HY, Yang BC (2013) J Biomed Mater Res Part A 101A:64Google Scholar
  110. 110.
    Morelli C, Barbanti-Brodano G, Ciannilli A, Campioni K, Boriani S, Tognon M (2007) J Biomed Mater Res Part A 83A:178Google Scholar
  111. 111.
    Brammer KS, Choi C, Frandsen CJ, Oh S, Johnston G, Jin S (2011) Acta Biomater 7:2697Google Scholar
  112. 112.
    Smith BS, Yoriya S, Grissom L, Grimes CA, Popat KC (2010) J Biomed Mater Res Part A 95A:350Google Scholar
  113. 113.
    Li J, Zhu W, Liu J, Liu X, Liu H (2012) Chin Sci Bull 57:2022Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ai Wen Tan
    • 1
  • Belinda Pingguan-Murphy
    • 1
  • Roslina Ahmad
    • 2
  • Sheikh Ali Akbar
    • 3
  1. 1.Department of Biomedical EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Mechanical EngineeringUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations