Journal of Materials Science

, Volume 48, Issue 24, pp 8377–8385 | Cite as

Influence of upscaling accumulative roll bonding on the homogeneity and mechanical properties of AA1050A

  • M. Ruppert
  • W. Böhm
  • H. Nguyen
  • H. W. Höppel
  • M. Merklein
  • M. Göken


Accumulative roll bonding (ARB), as a method for production of ultrafine grained materials, is frequently supposed to be easily transferable to established industrial production lines. In literature, however, common sheet dimensions used for ARB in a laboratory scale are between 20 and 100 mm in width. In order to quantify the potential of upscaling the ARB process to a technological relevant level, sheets of AA1050A with an initial sheet width of 100–450 mm were accumulative roll bonded up to 8 cycles. In this regard, three different rolling mills of distinct dimensions were used for processing of the sheet material. The influence of process parameters and the reproducibility of the process, in terms of mechanical properties and homogeneity of the sheets, were studied by means of mechanical and microstructural characterization. Both appear to be largely independent on the sheet size and the rolling mill utilized for production. Only small deviations after the first cycles could be detected, vanishing in subsequent cycles due to the features of microstructural evolution. The finally obtained results indicate a high potential for industrial application of ARB and illustrate the possibility to upscale the process to a level necessary for that purpose.


Ultimate Tensile Strength Upscaling Strain Rate Sensitivity Rolling Mill Thickness Reduction 



The authors gratefully acknowledge the financial support of the German Research Council (DFG) under project GO 741/19-1 and the Cluster of Excellence, Engineering of Advanced Materials’ Erlangen-Nuremberg, which is funded within the framework of its, Excellence Initiative’.


  1. 1.
    Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scr Mater 39:1221CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Islamgaliev RK, Alexandrow IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  3. 3.
    Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579CrossRefGoogle Scholar
  4. 4.
    Huang X, Tsuji N, Hansen N, Minamino Y (2003) Mater Sci Eng A 340:265CrossRefGoogle Scholar
  5. 5.
    Lee SH, Saito Y, Tsuji N, Utsunomiya H, Sakai T (2002) Scr Mater 46:281CrossRefGoogle Scholar
  6. 6.
    Höppel HW, May J, Göken M (2004) Adv Eng Mater 6:781CrossRefGoogle Scholar
  7. 7.
    Tsuji N, Saito Y, Lee SH, Minamino Y (2003) Adv Eng Mater 5:338CrossRefGoogle Scholar
  8. 8.
    Tsuji N, Nakashima H, Yoshida F, Minamino Y (2002) Mater Sci Forum 396:423CrossRefGoogle Scholar
  9. 9.
    Kidmose J, Lu L, Winther G, Hansen N, Huang X (2012) J Mater Sci 47:7901. doi: 10.1007/s10853-012-6718-2 CrossRefGoogle Scholar
  10. 10.
    Frint P, Halle T, Wagner MFX, Hockauf M, Lampke T (2010) Mat.-wiss. u. Werkstofftech 41:814CrossRefGoogle Scholar
  11. 11.
    Hart EW (1967) Acta Metall 15:351CrossRefGoogle Scholar
  12. 12.
    Blum W, Zeng H (2009) Acta Mater 57:1966CrossRefGoogle Scholar
  13. 13.
    Tsuji N, Ueji R, Ito Y, Saito Y (2000). Proceedings of the 21th RISØ International Symposium on Materials Science, RISØ National Laboratory, Roskilde 607Google Scholar
  14. 14.
    Scharnweber J, Skrotzki W, Oertel CG, Brokmeier HG, Höppel HW, Topic I, Jaschinski J (2010) Adv Eng Mater 12:989CrossRefGoogle Scholar
  15. 15.
    Valiev RZ, Alexandrov IV (2002) J Mater Res 17:5CrossRefGoogle Scholar
  16. 16.
    Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng A 381:71CrossRefGoogle Scholar
  17. 17.
    May J, Höppel HW, Göken M (2005) Scr Mater 53:189CrossRefGoogle Scholar
  18. 18.
    Li L, Nagai K, Fuxing Y (2008) Sci Technol Adv Mater 9:1Google Scholar
  19. 19.
    Vaidyanath LR, Nicholas MG, Milner DR (1959) Br Weld J 6:13Google Scholar
  20. 20.
    Soltani MA, Jamaati R, Toroghinejad MR (2012) Mater Sci Eng A 550:367CrossRefGoogle Scholar
  21. 21.
    Vaidyanath LR, Milner DR (1960) Br Weld J 7:513Google Scholar
  22. 22.
    Lukaschin ND, Borissow AP, Erlikh AI (1997) J Mater Process Technol 66:264CrossRefGoogle Scholar
  23. 23.
    Tylecote RF, Howd D, Furmidge JE (1958) Br Weld J 5:21Google Scholar
  24. 24.
    Cantalejos NA, Cusminsky G (1972) J Inst Metals 100:20Google Scholar
  25. 25.
    Skrotzki W, Hünsche I, Hüttenrauch J, Oertel CG, Brokmeier HG, Höppel HW, Topic I (2008) Texture Stress Microstruct 2008:1Google Scholar
  26. 26.
    Lapovok R, McKenzie PW, Thomson PF, Semiatin SL (2007) Int J Mater Res 98:325Google Scholar
  27. 27.
    Topic I, Höppel HW, Staud D, Merklein M, Geiger M, Göken M (2008) Adv Eng Mater 10:1101CrossRefGoogle Scholar
  28. 28.
    Topic I, Höppel HW, Göken M (2008) J Mater Sci 43:7320. doi: 10.1007/s10853-008-2754-3 CrossRefGoogle Scholar
  29. 29.
    Maier V, Hausöl T, Schmidt CW, Böhm W, Nguyen H, Merklein M, Höppel HW, Göken M (2012) Metall Mater Trans A 43:3097CrossRefGoogle Scholar
  30. 30.
    Furukawa M, Utsonomiya A, Matsubara K, Horita Z, Langdon TG (2001) Acta Mater 49:3829CrossRefGoogle Scholar
  31. 31.
    Topic I, Höppel HW, Göken M (2007) Int J Mater Res 98:320Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Ruppert
    • 1
  • W. Böhm
    • 2
  • H. Nguyen
    • 2
  • H. W. Höppel
    • 1
  • M. Merklein
    • 2
  • M. Göken
    • 1
  1. 1.Department of Materials Science and Engineering, Institute I: General Materials PropertiesFriedrich-Alexander-University of Erlangen-NürnbergErlangenGermany
  2. 2.Department of Mechanical Engineering, Institute of Manufacturing TechnologyFriedrich-Alexander-University of Erlangen-NürnbergErlangenGermany

Personalised recommendations