Journal of Materials Science

, Volume 48, Issue 23, pp 8302–8307 | Cite as

Synthesis of nickel picrate energetic film in a 3D ordered silicon microchannel plate through an in situ chemical reaction

  • Wenchao Zhang
  • Bo Xu
  • Lianwei Wang
  • Xiaowei Wang
  • Jason A. Thomas
  • Yimin Chao


Micro-energetic devices with energetic and functional diversity have attracted interest from scientific communities, through features such as the integration of energetic materials into micro-electro-mechanical systems (MEMS). In this study, a method for the preparation of nickel picrate energetic films on the sidewalls of a silicon microchannel plate (Si-MCP) is presented. The Si-MCP was produced by a photoelectrochemical process and a thin film of nickel (Ni) was synthesized by electroless plating of Ni on the sidewalls of the Si-MCP. The thin film of nickel picrate was successfully produced via an in situ chemical reaction method by introducing picric acid into the 3D ordered nickel/silicon microchannel plate (Ni/Si-MCP). Field emission scanning electron microscopy, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy were used to study the morphological and structural properties of the thin film. The results demonstrate that picric acid reacted with Ni to form a nickel picrate thin film. Also, differential scanning calorimetry and thermogravimetric analysis were employed to characterize the thermal decomposition of the energetic film. The approach can solve the problem of integrating organic energetic materials with MEMS devices. Also, nickel picrate can release a mass of energy and gas simultaneously, which further enhances the functional diversity of MEMS devices.


Picric Acid Picrate Energetic Material Electroless Plating Electrochemical Etching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the National Science Foundation of China (NSFC, Grant Nos. 50806033 and 61176108).


  1. 1.
    Chou SK, Yang WM, Chua KJ, Li J, Zhang KL (2011) Appl Energy 88(1):1CrossRefGoogle Scholar
  2. 2.
    Kim SH, Zachariah MR (2004) Adv Mater 16(20):1821CrossRefGoogle Scholar
  3. 3.
    Reddy BSB, Das K, Das S (2007) J Mater Sci 42(22):9366. doi: 10.1007/s10853-007-1827-z CrossRefGoogle Scholar
  4. 4.
    Yang Y, Xu D, Zhang K (2012) J Mater Sci 47(3):1296. doi: 10.1007/s10853-011-5903-z CrossRefGoogle Scholar
  5. 5.
    Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C (2007) J Microelectromech Syst 16(4):919CrossRefGoogle Scholar
  6. 6.
    Prakash A, McCormick AV, Zachariah MR (2005) Adv Mater 17(7):900CrossRefGoogle Scholar
  7. 7.
    Blobaum KJ, Reiss ME, Plitzko JM, Weihs TP (2003) J Appl Phys 94(5):2915CrossRefGoogle Scholar
  8. 8.
    Adams D, Hodges V, Bai M, Jones E, Rodriguez M, Buchheit T, Moore J (2008) J Appl Phys 104(4):043502CrossRefGoogle Scholar
  9. 9.
    Adams D, Rodriguez M, Tigges C, Kotula P (2006) J Mater Res 21(12):3168CrossRefGoogle Scholar
  10. 10.
    Morris CJ, Mary B, Zakar E, Barron S, Fritz G, Knio O, Weihs TP, Hodgin R, Wilkins P, May C (2010) J Phys Chem Solids 71(2):84CrossRefGoogle Scholar
  11. 11.
    Ohkura Y, Liu SY, Rao PM, Zheng X (2011) Proc Combust Inst 33(2):1909CrossRefGoogle Scholar
  12. 12.
    Fischer SH, Grubelich MC (1996) A survey of combustible metals, thermites, and intermetallics for pyrotechnic applications. Paper presented at the AIAA/ASME/SAE/ASEE Joint propulsion conference, Lake Buena Vista, FLGoogle Scholar
  13. 13.
    Matsukawa M, Matsunaga T, Yoshida M, Fujiwara S (2004) Sci Technol Energy Mater 65(1):1Google Scholar
  14. 14.
    Teasdale D, Milanovic V, Chang P, Pister KSJ (2001) Smart Mater Struct 10:1145CrossRefGoogle Scholar
  15. 15.
    Zhang W, Peng H, Gao X, Ye J, Zhang Z, Chao Y (2012) Surf Interface Anal 44(8):1203CrossRefGoogle Scholar
  16. 16.
    Lewis DH Jr, Janson SW, Cohen RB, Antonsson EK (2000) Sens Actuator A 80(2):143CrossRefGoogle Scholar
  17. 17.
    Jin X, Hu Y, Wang Y, Shen R, Ye Y, Wu L, Wang S (2012) Appl Surf Sci 258(7):2977CrossRefGoogle Scholar
  18. 18.
    Zhang K, Rossi C, Alphonse P, Tenailleau C, Cayez S, Chane-Ching J-Y (2008) Appl Phys A 94(4):957CrossRefGoogle Scholar
  19. 19.
    Miao F, Tao B (2011) Electrochim Acta 56(19):6709CrossRefGoogle Scholar
  20. 20.
    Chen X, Lin J, Yuan D, Ci P, Xin P, Xu S, Wang L (2008) J Micromech Microeng 18(3):037003CrossRefGoogle Scholar
  21. 21.
    Brill T, Zhang T, Tappan B (2000) Combust Flame 121(4):662CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wenchao Zhang
    • 1
  • Bo Xu
    • 1
  • Lianwei Wang
    • 2
  • Xiaowei Wang
    • 1
  • Jason A. Thomas
    • 3
  • Yimin Chao
    • 3
  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Key Laboratory of Polar Material and Device, Department of Electronic EngineeringEast China Normal UniversityShanghaiPeople’s Republic of China
  3. 3.School of ChemistryUniversity of East AngliaNorwichUK

Personalised recommendations