Journal of Materials Science

, Volume 48, Issue 23, pp 8108–8116 | Cite as

Design of low temperature self-cured phthalonitrile-based polymers for advanced glass fiber composite laminates

  • Mingzhen Xu
  • Mengdie Liu
  • Shihua Dong
  • Xiaobo Liu


Self-promoted copolymerization behavior and processability of phthalonitrile oligomer/phthalonitrile containing benzoxazine (Po/BA-ph) system were investigated by differential scanning calorimetry and dynamic rheological analysis. The results revealed that Po/BA-ph systems exhibited double-stage curing behaviors which corresponded to the ring-opening polymerization of benzoxazine rings and ring-formation polymerization of nitrile groups. Compared with Po, processability of Po/BA-ph blends was improved and could be tuned by varying BA-ph contents, processing temperature, and time. The structures of the copolymers were also characterized and discussed to further confirm the copolymerizing behaviors. Then Po/BA-ph copolymers were employed to prepare Po/BA-ph/glass fiber (GF) composite laminates, and their mechanical and thermal properties were investigated. Compared with those of Po/GF composites, the flexural strength and modulus of Po/BA-ph/GF composites were increased by 6.5 and 25 %, respectively. All of the Po/BA-ph/GF composite laminates were stable up to 430 °C in air. The systematic study of Po/BA-ph system could enrich the thermosetting resin/thermosetting resin systems in industrial applications. Meanwhile, the outstanding mechanical properties and thermal stabilities enable the Po/BA-ph/GF composite laminates to be further applied in the areas which require excellent mechanical properties and high temperature resistance.


Flexural Strength Composite Laminate Cyano Group Active Hydrogen Flexural Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank for financial support of this work from the National Natural Science Foundation (No. 51173021) and “863” National Major Program of High Technology (2012AA03A212).


  1. 1.
    Wong CP (1988) Application of polymers in encapsulation of electronic parts, in advance in polymer science, vol 84. Springer, Berlin, p 63Google Scholar
  2. 2.
    Kinjo N, Ogata M, Nishi K, Kaneda A (1989) Epoxy molding compounds as encapsulation materials for microelectronic devices, in advances in polymer science, vol 88. Springer, Berlin, p 1Google Scholar
  3. 3.
    Nagai A, Eguchi S, Ishii T, Ogata M, Nishi K (1996) Polym News 21:44Google Scholar
  4. 4.
    Yoda N (1996) Polym Adv Technol 8:215CrossRefGoogle Scholar
  5. 5.
    Sastri SB, Armistead JP, Keller TM (1996) Polym Compos 17:816CrossRefGoogle Scholar
  6. 6.
    Sastri SB, Armistead JP, Keller TM (1997) Polym Compos 18:48CrossRefGoogle Scholar
  7. 7.
    Laskoski M, Dominguez DD, Keller TM (2005) J Polym Sci Part A 43:4136CrossRefGoogle Scholar
  8. 8.
    Dominguez DD, Keller TM (2006) High Perform Polym 18:283CrossRefGoogle Scholar
  9. 9.
    Sastri SB, Keller TM (1998) J Polym Sci Part A 36:1885CrossRefGoogle Scholar
  10. 10.
    Keller TM, Griffith JR (1980) Am Chem Soc Symp Ser 132:25Google Scholar
  11. 11.
    Sastri SB, Keller TM (1999) J Polym Sci Part A 37:2105CrossRefGoogle Scholar
  12. 12.
    Sumner MJ, Sankarapandian M, McGrath JE, Riffle JS, Sorathia U (2002) Polymer 43:5069CrossRefGoogle Scholar
  13. 13.
    Hinkley JA (1984) J Appl Polym Sci 29:3339CrossRefGoogle Scholar
  14. 14.
    Warzel ML, Keller TM (1993) Polymer 34:663CrossRefGoogle Scholar
  15. 15.
    Dominguez DD, Keller TM (2005) Polymer 46:4614CrossRefGoogle Scholar
  16. 16.
    Dominguez DD, Keller TM (2007) Polymer 48:91CrossRefGoogle Scholar
  17. 17.
    Laskoski M, Keller TM, Qadri SB (2007) Polymer 48:7484CrossRefGoogle Scholar
  18. 18.
    Laskoski M, Dominguez DD, Keller TM (2007) Polymer 48:6234CrossRefGoogle Scholar
  19. 19.
    Du RH, Li WT, Liu XB (2009) Polym Degrad Stab 94:2178CrossRefGoogle Scholar
  20. 20.
    Yang XL, Lei YJ, Zhong JC, Zhao R, Liu XB (2011) J Appl Polym Sci 119:882CrossRefGoogle Scholar
  21. 21.
    Cao GP, Chen WJ, Wei JJ, Li WT, Liu XB (2007) Express Polym Lett 1:512CrossRefGoogle Scholar
  22. 22.
    Zuo F, Liu XB (2010) J Appl Polym Sci 117:1469Google Scholar
  23. 23.
    Zeng K, Hong HB, Zhou SH, Wu DM, Miao PK, Huang ZF, Yang G (2009) Polymer 50:5002CrossRefGoogle Scholar
  24. 24.
    Xu MZ, Yang XL, Zhao R, Liu XB (2013) J Appl Polym Sci 128:1176CrossRefGoogle Scholar
  25. 25.
    Xu MZ, Hu JQ, Zou XQ, Dong SH, Liu MD, Zou YK, Liu XB (2013) J Appl Polym Sci. doi: 10.1002/app.38988 Google Scholar
  26. 26.
    Ning X, Ishida H (1994) J Polym Sci Part A 32:1121CrossRefGoogle Scholar
  27. 27.
    Agag T, Takeichi T (2001) Macromolecules 34:7257CrossRefGoogle Scholar
  28. 28.
    Dominguez DD, Keller TM (2008) J Appl Polym Sci 110:2504CrossRefGoogle Scholar
  29. 29.
    Laza JM, Vilas JL, Mijangos F, Rodriguez M, Leon LM (2005) J Appl Polym Sci 98:818CrossRefGoogle Scholar
  30. 30.
    Yang B, Kozey V, Adanur S, Kumara S (2000) Compos B 31:715CrossRefGoogle Scholar
  31. 31.
    Mouritz AP, Mathys Z, Gardiner CP (2004) Compos B 35:467CrossRefGoogle Scholar
  32. 32.
    Prashantha K, Soulestin J, Lacrampe MF, Claes M, Dupin G, Krawczak P (2008) Express Polym Lett 10:735CrossRefGoogle Scholar
  33. 33.
    Keller TM (1988) J Polym Sci Part A 26:3199CrossRefGoogle Scholar
  34. 34.
    Kuznetsov AA, Semenova GK (2010) Russ J Gen Chem 80:2170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mingzhen Xu
    • 1
  • Mengdie Liu
    • 1
  • Shihua Dong
    • 1
  • Xiaobo Liu
    • 1
  1. 1.Research Branch of Functional Materials, Institute of Microelectronic & Solid State Electronic, High-Temperature Resistant Polymers and Composites Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations