Skip to main content
Log in

Optimizing reaction condition for synthesizing spinnable carbon nanotube arrays by chemical vapor deposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Compared with the ordinary vertically aligned carbon nanotube (VACNT) arrays, the carbon nanotubes in spinnable VACNT arrays have better alignment, higher density, and narrower diameter distribution. The synthesis of spinnable VACNT arrays is sensitive to the reaction condition and the repeatable prepared of spinnable VACNT arrays still need improvement. In this paper, spinnable VACNT arrays were grown by chemical vapor deposition from C2H2/Ar using Fe coated on Si wafers as a catalyst. With the aim of improving the yield and reproducibility of spinnable VACNT arrays, the reaction conditions were systematically investigated. The growth kinetics of VACNT arrays was also investigated. The rate of growth of VACNT arrays can reach 465 μm/min at the initial growth stage and the activation energy of VACNT array growth is determined to be 112.2 kJ/mol. Meanwhile, a collective growth model for the evolution of spinnable VACNT arrays is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen H, Roy A, Baek JB, Zhu L, Qu J, Dai LM (2010) Mater Sci Eng R 70:63

    Article  Google Scholar 

  2. Small WR, Panhuis MIH (2007) Small 3:1500

    Article  CAS  Google Scholar 

  3. Green MJ, Behabtu N, Pasquali M, Adams WW (2009) Polymer 50:4979

    Article  CAS  Google Scholar 

  4. Ding MN, Star A (2012) Angew Chem Int Ed 51:7637

    Article  CAS  Google Scholar 

  5. Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ (1999) Science 283:512

    Article  CAS  Google Scholar 

  6. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520

    Article  CAS  Google Scholar 

  7. Cheng FY, Tao ZL, Liang J, Chen J (2008) Chem Mater 20:667

    Article  CAS  Google Scholar 

  8. Cao Q, Rogers JA (2009) Adv Mater 21:29

    Article  CAS  Google Scholar 

  9. Avouris P, Chen ZH, Perebeinos V (2007) Nat Nanotechnol 2:605

    Article  CAS  Google Scholar 

  10. Wei DC, Liu YQ (2008) Adv Mater 20:2815

    Article  CAS  Google Scholar 

  11. Lan YC, Wang Y, Ren ZF (2011) Adv Phys 60:553

    Article  CAS  Google Scholar 

  12. Liu K, Jiang KL, Wei Y, Ge SP, Liu P, Fan SS (2007) Adv Mater 19:975

    Article  CAS  Google Scholar 

  13. Liao QL, Yang Y, Qi JJ, Zhang Y, Huang YH, Xia LS, Liu L (2010) Appl Phys Lett 96:073109

    Article  Google Scholar 

  14. Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480

    Article  CAS  Google Scholar 

  15. Dai HJ (2002) Acc Chem Res 35:1035

    Article  CAS  Google Scholar 

  16. Jiang KL, Li QQ, Fan SS (2002) Nature 419:801

    Article  CAS  Google Scholar 

  17. Zhang M, Atkinson KR, Baughman RH (2004) Science 306:1358

    Article  CAS  Google Scholar 

  18. Zhang M, Fang SL, Zakhidow AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Science 309:1215

    Article  CAS  Google Scholar 

  19. Liu K, Sun YH, Chen L, Feng C, Feng XF, Jiang KL, Zhao YG, Fan SS (2008) Nano Lett 8:700

    Article  CAS  Google Scholar 

  20. Huynh CP, Hawkins SC, Redrado M, Barnes S, Lau D, Humphries W, Simon GP (2011) Carbon 49:1989

    Article  CAS  Google Scholar 

  21. Jiang KL, Wang JP, Li QQ, Liu L, Liu CH, Fan SS (2011) Adv Mater 23:1154

    Article  CAS  Google Scholar 

  22. Kuznetsov AA, Fonseca AF, Baughman RH, Zakhidov AA (2011) ACS Nano 5:985

    Article  CAS  Google Scholar 

  23. Li QW, Zhang XF, DePaula RF, Zheng LX, Zhao YH, Stan L, Holesinger TG, Arendt PN, Peterson DE, Zhu YT (2006) Adv Mater 18:3160

    Article  CAS  Google Scholar 

  24. Zhang SJ, Zhu LB, Minus ML, Chae HG, Jagannathan S, Wong CP, Kowalik J, Roberson LB, Kumar S (2008) J Mater Sci 43:4356. doi:10.1007/s10853-008-2558-5

    Article  CAS  Google Scholar 

  25. Nakayama Y (2008) Jpn J Appl Phys 47:8149

    Article  CAS  Google Scholar 

  26. Tran CD, Humphries W, Smith SM, Huynh C, Lucas S (2009) Carbon 47:2662

    Article  CAS  Google Scholar 

  27. Zhang Q, Wang DG, Huang JQ, Zhou WP, Luo GH, Qian WZ, Wei F (2010) Carbon 48:2855

    Article  CAS  Google Scholar 

  28. Hasegawa K, Noda S (2011) ACS Nano 5:975

    Article  CAS  Google Scholar 

  29. Sugime H, Noda S, Maruyama S, Yamaguchi Y (2009) Carbon 47:234

    Article  CAS  Google Scholar 

  30. Kim JH, Jang HS, Lee KH, Overzet LJ, Lee GS (2010) Carbon 48:538

    Article  CAS  Google Scholar 

  31. Pint CL, Pheasant ST, Parra-Vasquez ANG, Horton C, Xu YQ, Hauge RH (2009) J Phys Chem C 113:4125

    Article  CAS  Google Scholar 

  32. Huynh CP, Hawkins SC (2010) Carbon 48:1105

    Article  CAS  Google Scholar 

  33. Feng XF, Liu K, Xie X, Zhou RF, Zhang LN, Li QQ, Fan SS, Jiang KL (2009) J Phys Chem C 113:9623

    Article  CAS  Google Scholar 

  34. Liu K, Jiang KL, Feng C, Chen Z, Fan SS (2005) Carbon 43:2850

    Article  CAS  Google Scholar 

  35. Bronikowski MJ (2007) J Phys Chem C 111:17705

    Article  CAS  Google Scholar 

  36. Ting JM, Wu WY, Liao KH, Wu HH (2009) Carbon 47:2671

    Article  CAS  Google Scholar 

  37. Wirth CT, Zhang C, Zhong GF, Hofmann S, Robertson J (2009) ACS Nano 3:3560

    Article  CAS  Google Scholar 

  38. In JB, Grigoropoulos CP, Chernov AA, Noy A (2011) ACS Nano 5:9602

    Article  CAS  Google Scholar 

  39. Yasuda S, Hiraoka T, Futaba DN, Yamada T, Yumura M, Hata K (2009) Nano Lett 9:769

    Article  CAS  Google Scholar 

  40. Zhu LB, Xu JW, Xiao F, Jiang HJ, Hess DW, Wong CP (2007) Carbon 45:344

    Article  CAS  Google Scholar 

  41. Stadermann M, Sherlock SP, In JB, Fornasiero F, Park HG, Artyukhin AB, Wang YM, De Yoreo JJ, Grigoropoulos CP, Bakajin O, Chernov AA, Noy A (2009) Nano Lett 9:738

    Article  CAS  Google Scholar 

  42. Cui XW, Wei WF, Harrower C, Chen WX (2009) Carbon 47:3441

    Article  CAS  Google Scholar 

  43. Yun YH, Shanov V, Tu Y, Subramaniam S, Schulz MJ (2006) J Phys Chem C 110:23920

    CAS  Google Scholar 

  44. Zhang M, Baughman R (2011) Assembly of carbon nanotube sheets. In: Marulanda JM (ed) Electronic properties of carbon nanotubes. InTech, Rijeka, p 1

    Google Scholar 

  45. Zhang M, Li J (2009) Mater Today 12:12

    Article  CAS  Google Scholar 

  46. Eras G, Rouleau CM, Yoon M, Puretzky AA, Jackson JJ, Geohegan DB (2009) J Phys Chem C 113:15484

    Article  Google Scholar 

  47. Bedewy M, Meshot ER, Guo HC, Verplogen EA, Lu W, Hart AJ (2009) J Phys Chem C 113:20576

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Wang, B. & Zhang, M. Optimizing reaction condition for synthesizing spinnable carbon nanotube arrays by chemical vapor deposition. J Mater Sci 48, 7749–7756 (2013). https://doi.org/10.1007/s10853-013-7596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7596-y

Keywords

Navigation