Journal of Materials Science

, Volume 48, Issue 21, pp 7749–7756 | Cite as

Optimizing reaction condition for synthesizing spinnable carbon nanotube arrays by chemical vapor deposition

  • Yanbin Cui
  • Ben Wang
  • Mei Zhang


Compared with the ordinary vertically aligned carbon nanotube (VACNT) arrays, the carbon nanotubes in spinnable VACNT arrays have better alignment, higher density, and narrower diameter distribution. The synthesis of spinnable VACNT arrays is sensitive to the reaction condition and the repeatable prepared of spinnable VACNT arrays still need improvement. In this paper, spinnable VACNT arrays were grown by chemical vapor deposition from C2H2/Ar using Fe coated on Si wafers as a catalyst. With the aim of improving the yield and reproducibility of spinnable VACNT arrays, the reaction conditions were systematically investigated. The growth kinetics of VACNT arrays was also investigated. The rate of growth of VACNT arrays can reach 465 μm/min at the initial growth stage and the activation energy of VACNT array growth is determined to be 112.2 kJ/mol. Meanwhile, a collective growth model for the evolution of spinnable VACNT arrays is also proposed.


Growth Time Catalyst Particle Hydrogen Flow Rate Initial Growth Rate Initial Growth Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen H, Roy A, Baek JB, Zhu L, Qu J, Dai LM (2010) Mater Sci Eng R 70:63CrossRefGoogle Scholar
  2. 2.
    Small WR, Panhuis MIH (2007) Small 3:1500CrossRefGoogle Scholar
  3. 3.
    Green MJ, Behabtu N, Pasquali M, Adams WW (2009) Polymer 50:4979CrossRefGoogle Scholar
  4. 4.
    Ding MN, Star A (2012) Angew Chem Int Ed 51:7637CrossRefGoogle Scholar
  5. 5.
    Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ (1999) Science 283:512CrossRefGoogle Scholar
  6. 6.
    Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520CrossRefGoogle Scholar
  7. 7.
    Cheng FY, Tao ZL, Liang J, Chen J (2008) Chem Mater 20:667CrossRefGoogle Scholar
  8. 8.
    Cao Q, Rogers JA (2009) Adv Mater 21:29CrossRefGoogle Scholar
  9. 9.
    Avouris P, Chen ZH, Perebeinos V (2007) Nat Nanotechnol 2:605CrossRefGoogle Scholar
  10. 10.
    Wei DC, Liu YQ (2008) Adv Mater 20:2815CrossRefGoogle Scholar
  11. 11.
    Lan YC, Wang Y, Ren ZF (2011) Adv Phys 60:553CrossRefGoogle Scholar
  12. 12.
    Liu K, Jiang KL, Wei Y, Ge SP, Liu P, Fan SS (2007) Adv Mater 19:975CrossRefGoogle Scholar
  13. 13.
    Liao QL, Yang Y, Qi JJ, Zhang Y, Huang YH, Xia LS, Liu L (2010) Appl Phys Lett 96:073109CrossRefGoogle Scholar
  14. 14.
    Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480CrossRefGoogle Scholar
  15. 15.
    Dai HJ (2002) Acc Chem Res 35:1035CrossRefGoogle Scholar
  16. 16.
    Jiang KL, Li QQ, Fan SS (2002) Nature 419:801CrossRefGoogle Scholar
  17. 17.
    Zhang M, Atkinson KR, Baughman RH (2004) Science 306:1358CrossRefGoogle Scholar
  18. 18.
    Zhang M, Fang SL, Zakhidow AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Science 309:1215CrossRefGoogle Scholar
  19. 19.
    Liu K, Sun YH, Chen L, Feng C, Feng XF, Jiang KL, Zhao YG, Fan SS (2008) Nano Lett 8:700CrossRefGoogle Scholar
  20. 20.
    Huynh CP, Hawkins SC, Redrado M, Barnes S, Lau D, Humphries W, Simon GP (2011) Carbon 49:1989CrossRefGoogle Scholar
  21. 21.
    Jiang KL, Wang JP, Li QQ, Liu L, Liu CH, Fan SS (2011) Adv Mater 23:1154CrossRefGoogle Scholar
  22. 22.
    Kuznetsov AA, Fonseca AF, Baughman RH, Zakhidov AA (2011) ACS Nano 5:985CrossRefGoogle Scholar
  23. 23.
    Li QW, Zhang XF, DePaula RF, Zheng LX, Zhao YH, Stan L, Holesinger TG, Arendt PN, Peterson DE, Zhu YT (2006) Adv Mater 18:3160CrossRefGoogle Scholar
  24. 24.
    Zhang SJ, Zhu LB, Minus ML, Chae HG, Jagannathan S, Wong CP, Kowalik J, Roberson LB, Kumar S (2008) J Mater Sci 43:4356. doi: 10.1007/s10853-008-2558-5 CrossRefGoogle Scholar
  25. 25.
    Nakayama Y (2008) Jpn J Appl Phys 47:8149CrossRefGoogle Scholar
  26. 26.
    Tran CD, Humphries W, Smith SM, Huynh C, Lucas S (2009) Carbon 47:2662CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Wang DG, Huang JQ, Zhou WP, Luo GH, Qian WZ, Wei F (2010) Carbon 48:2855CrossRefGoogle Scholar
  28. 28.
    Hasegawa K, Noda S (2011) ACS Nano 5:975CrossRefGoogle Scholar
  29. 29.
    Sugime H, Noda S, Maruyama S, Yamaguchi Y (2009) Carbon 47:234CrossRefGoogle Scholar
  30. 30.
    Kim JH, Jang HS, Lee KH, Overzet LJ, Lee GS (2010) Carbon 48:538CrossRefGoogle Scholar
  31. 31.
    Pint CL, Pheasant ST, Parra-Vasquez ANG, Horton C, Xu YQ, Hauge RH (2009) J Phys Chem C 113:4125CrossRefGoogle Scholar
  32. 32.
    Huynh CP, Hawkins SC (2010) Carbon 48:1105CrossRefGoogle Scholar
  33. 33.
    Feng XF, Liu K, Xie X, Zhou RF, Zhang LN, Li QQ, Fan SS, Jiang KL (2009) J Phys Chem C 113:9623CrossRefGoogle Scholar
  34. 34.
    Liu K, Jiang KL, Feng C, Chen Z, Fan SS (2005) Carbon 43:2850CrossRefGoogle Scholar
  35. 35.
    Bronikowski MJ (2007) J Phys Chem C 111:17705CrossRefGoogle Scholar
  36. 36.
    Ting JM, Wu WY, Liao KH, Wu HH (2009) Carbon 47:2671CrossRefGoogle Scholar
  37. 37.
    Wirth CT, Zhang C, Zhong GF, Hofmann S, Robertson J (2009) ACS Nano 3:3560CrossRefGoogle Scholar
  38. 38.
    In JB, Grigoropoulos CP, Chernov AA, Noy A (2011) ACS Nano 5:9602CrossRefGoogle Scholar
  39. 39.
    Yasuda S, Hiraoka T, Futaba DN, Yamada T, Yumura M, Hata K (2009) Nano Lett 9:769CrossRefGoogle Scholar
  40. 40.
    Zhu LB, Xu JW, Xiao F, Jiang HJ, Hess DW, Wong CP (2007) Carbon 45:344CrossRefGoogle Scholar
  41. 41.
    Stadermann M, Sherlock SP, In JB, Fornasiero F, Park HG, Artyukhin AB, Wang YM, De Yoreo JJ, Grigoropoulos CP, Bakajin O, Chernov AA, Noy A (2009) Nano Lett 9:738CrossRefGoogle Scholar
  42. 42.
    Cui XW, Wei WF, Harrower C, Chen WX (2009) Carbon 47:3441CrossRefGoogle Scholar
  43. 43.
    Yun YH, Shanov V, Tu Y, Subramaniam S, Schulz MJ (2006) J Phys Chem C 110:23920Google Scholar
  44. 44.
    Zhang M, Baughman R (2011) Assembly of carbon nanotube sheets. In: Marulanda JM (ed) Electronic properties of carbon nanotubes. InTech, Rijeka, p 1Google Scholar
  45. 45.
    Zhang M, Li J (2009) Mater Today 12:12CrossRefGoogle Scholar
  46. 46.
    Eras G, Rouleau CM, Yoon M, Puretzky AA, Jackson JJ, Geohegan DB (2009) J Phys Chem C 113:15484CrossRefGoogle Scholar
  47. 47.
    Bedewy M, Meshot ER, Guo HC, Verplogen EA, Lu W, Hart AJ (2009) J Phys Chem C 113:20576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Industrial and Manufacturing Engineering, High-Performance Materials Institute, FAMU-FSU College of EngineeringFlorida State UniversityTallahasseeUSA

Personalised recommendations