Skip to main content
Log in

Reaction enhanced wetting of quartz by silicon droplets and its instabilities

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A miniature reaction cell was developed in order to study the influence of gas phase components on reactive wetting and dewetting processes. Small silicon droplets on fused silica can be observed in situ at 4000 frames per second under reaction conditions by a microscope equipped with a high speed camera. Additionally, ex-situ investigations of etch profiles originating from the reactive wetting process are conducted by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Under certain reactive conditions large dynamic spreading modes exhibiting a new type of droplet instability are observed. Some spread-out droplets suddenly disrupt and decay into a ring of smaller droplets. Each of these then spreads again and disrupts into a circular array of even smaller droplets forming a ring-shaped structure. Whole cascades of decay can be traced by means of the etch profiles found on the substrate. The results are discussed within a simple thermodynamic model that relates the changes in the oxygen chemical potential to the changes of solid–liquid interface tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jadoon AK (2007) J Mater Sci 43:1. doi:10.1007/s10853-007-2217-2

    Article  Google Scholar 

  2. Lewinsohn CA, Singh M, Loehman R (2012) Advances in joining of ceramics, volume 138. Wiley, Hoboken http://onlinelibrary.wiley.com/book/10.1002/9781118405802

  3. Singh M, Shpargel TP, Asthana R (2007) J Mater Sci 43:23. doi:10.1007/s10853-007-1985-z

    Article  Google Scholar 

  4. Müller G, Mühe A, Backofen R, Tomzig E, Ammon W v (1999) Microelectron Eng 45:135. doi:10.1016/S0167-9317(99)00115-X

    Article  Google Scholar 

  5. Mukai K, Sako T, Yuan Z, Su Z (2000) Mater Trans JIM 41:639

    CAS  Google Scholar 

  6. Saiz E, Cannon RM, Tomsia AP (2000) Acta Mater 48:4449. doi:10.1016/S1359-6454(00)00231-7

    Article  CAS  Google Scholar 

  7. Saiz E, Tomsia AP (2004) Nat Mater 3:903. doi:10.1038/nmat1252

    Article  CAS  Google Scholar 

  8. Saiz E, Tomsia AP (2005) Curr Opin Solid State Mater Sci 9:167. doi:10.1016/j.cossms.2006.04.005

    Article  CAS  Google Scholar 

  9. Champion JA, Keene BJ, Sillwood JM (1969) J Mater Sci 4:39. doi:10.1007/BF00555046

    Article  CAS  Google Scholar 

  10. Weiß D, Gebensleben T, Diestel L, Alphei L, Becker V, Becker JA (2011) J Mater Sci 46: 3436. doi:10.1007/s10853-010-5246-1. http://www.springerlink.com/content/u681x310844t5327/

  11. Evers J, Klüfers P, Staudigl R, Stallhofer P (2003) Angew Chem 115:5862. doi:10.1002/ange.200300587

    Article  Google Scholar 

  12. Wachsmuth D, Gebensleben T, Weiß D, Becker V, Alphei LD, Becker JA (2012) J Cryst Growth 355:122. doi:10.1016/j.jcrysgro.2012.06.044

    Article  CAS  Google Scholar 

  13. Saiz E, Cannon RM, Tomsia AP (2008) Annu Rev Mater Res 38:197. doi:10.1146/annurev.matsci.38.060407.132443

    Article  CAS  Google Scholar 

  14. Yuan ZF, Mukai K, Huang WL (2002) Langmuir 18:2054. doi:10.1021/la0112920

    Article  CAS  Google Scholar 

  15. Przyborowski M, Hibiya T, Eguchi M, Egry I (1995) J Cryst Growth 151:60. doi:10.1016/0022-0248(95)00056-9

    Article  CAS  Google Scholar 

  16. Shishkin AV, Basin AS (2004) Theor Found Chem Eng 38:660. doi:10.1007/s11236-005-0043-2

    Article  CAS  Google Scholar 

  17. Zhou Z, Mukherjee S, Rhim W-K (2003) J Cryst Growth 257:350. doi:10.1016/S0022-0248(03)01430-1

    Article  CAS  Google Scholar 

  18. Hirata H, Hoshikawa K (1990) J Cryst Growth 106:657. doi:10.1016/0022-0248(90)90040-R

    Article  CAS  Google Scholar 

  19. Shchipalov YK (2000) Glass Ceram 57:374. doi:10.1023/A:1010900903019

    Article  CAS  Google Scholar 

  20. Tang YW, Wang J, Zeng XC (2006) J Chem Phys 124: 236103. doi:10.1063/1.2206592

  21. Nagamori M, Boivin J-A, Claveau A (1995) J Non-Cryst Solids 189:270. doi:10.1016/0022-3093(95)00239-1

    Article  CAS  Google Scholar 

  22. McGraw JD, Li J, Tran DL, Shi A-C, Dalnoki-Veress K (2010) Soft Matter 6:1258. doi:10.1039/B919630G

    Article  CAS  Google Scholar 

  23. Craster RV, Matar OK (2009) Rev Mod Phys 81:1131. doi:10.1103/RevModPhys.81.1131

    Article  CAS  Google Scholar 

  24. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Rev Mod Phys 81:739. doi:10.1103/RevModPhys.81.739

    Article  CAS  Google Scholar 

  25. De Gennes P-G (1985) Rev Mod Phys 57:827. doi:10.1103/RevModPhys.57.827

    Article  Google Scholar 

  26. De Gennes P-G, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York

    Book  Google Scholar 

  27. Reiter G, Sharma A, Casoli A, David M-O, Khanna R, Auroy P (1999) Langmuir 15:2551. doi:10.1021/la981470y

    Article  CAS  Google Scholar 

  28. Israelachvili JN (2011) Intermolecular and surface forces: revised, 3rd edn. Academic Press, New York

    Google Scholar 

  29. Van Oss CJ, Chaudhury MK, Good RJ (1988) Chem Rev 88:927. doi:10.1021/cr00088a006

    Article  Google Scholar 

  30. Parsegian VA (2006) Van Der Waals forces: a handbook for biologists, chemists, engineers, and physicists. Cambridge University Press, New York

    Google Scholar 

  31. Sharma A (1993) Langmuir 9:861. doi:10.1021/la00027a042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the Wacker Siltronics company for providing the ultrapure silicon used for this study. Furthermore we thank Prof. R. Mawhorter for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Alphei.

Additional information

Dedicated to Professor Dr. Friedrich Hensel on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alphei, L.D., Grotjahn, R., Becker, V. et al. Reaction enhanced wetting of quartz by silicon droplets and its instabilities. J Mater Sci 48, 7350–7359 (2013). https://doi.org/10.1007/s10853-013-7587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7587-z

Keywords

Navigation