Journal of Materials Science

, Volume 48, Issue 21, pp 7664–7672 | Cite as

Effects of SWCNTs on mechanical and thermal performance of epoxy at elevated temperatures

  • Behnam Ashrafi
  • David Backman
  • Andrew Johnston
  • Yadienka Martinez-Rubi
  • Benoit Simard


A property which limits the breadth of application of thermoset polymers and their composites is their relatively low maximum operating temperatures. This work investigates the potential application of both functionalized single-walled carbon nanotubes (f-SWCNTs) based on negative charging, and unfunctionalized SWCNTs (u-SWCNTs) to increase the mechanical and thermal performance of a high-temperature aerospace-grade epoxy with a glass transition temperature of approximately 270 °C. Thermal and mechanical properties of the baseline epoxy and nanocomposites containing a low content of SWCNTs (0.2 % by weight) were characterized through thermogravimetric analyses, tensile tests, and dynamic mechanical analyses. Tensile tests were performed both at room temperature and at 80 °C. Further, room temperature tensile tests were performed on untreated and heat-treated specimens. The heat treatment was performed at 300 °C, slightly above the resin glass transition temperature. Results demonstrate that f-SWCNTs are effective in improving the mechanical and thermal performance of the epoxy. No significant improvement was observed for u-SWCNT nanocomposites. For the nanocomposite with f-SWCNTs, the ultimate tensile strength and strain to failure at room temperature (80 °C) increased by 20 % (8 %) and 71 % (77 %), respectively, as compared to the baseline epoxy. The f-SWCNT nanocomposite, unlike other examined materials, exhibited a stress–strain necking behavior at 80 °C, an indication of increased ductility. After heat treatment, these properties further improved relative to the neat epoxy (160 % increase in ultimate tensile strength and 270 % increase in strain to failure). This work suggests the potential to utilize f-SWCNTs based on negative charging to enhance high-temperature thermoset performance.


Epoxy Ultimate Tensile Strength Storage Modulus Dynamic Mechanical Analysis Epoxy Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624CrossRefGoogle Scholar
  2. 2.
    Kumar AP, Depan D, Tomer NS, Singh RP (2009) Prog Polym Sci 34:479CrossRefGoogle Scholar
  3. 3.
    Costache MC, Wang D, Heidecker MJ, Manias E, Wilkie CA (2006) Polym Adv Technol 17:272CrossRefGoogle Scholar
  4. 4.
    Li J, Tong L, Fang Z, Gu A, Xu Z (2006) Polym Degrad Stab 91:2046CrossRefGoogle Scholar
  5. 5.
    Yang K, Gu M, Jin Y (2008) J Appl Polym Sci 110:2980CrossRefGoogle Scholar
  6. 6.
    Seyhan AT, De la Vega A, Tanoglu M, Schulte K (2009) J Polym Sci: Part B 47:1511CrossRefGoogle Scholar
  7. 7.
    Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194CrossRefGoogle Scholar
  8. 8.
    Zhou Y, Pervin F, Lewis L, Jeelani S (2007) Mater Sci Eng A 452–453(15):657Google Scholar
  9. 9.
    Ma PC, Kim JK, Tang BZ (2007) Compos Sci Technol 67(14):2965CrossRefGoogle Scholar
  10. 10.
    Kingston CT, Jakubek ZJ, Denommee S, Simard B (2004) Carbon 42:1657CrossRefGoogle Scholar
  11. 11.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Prog Polym Sci 35:357CrossRefGoogle Scholar
  12. 12.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624CrossRefGoogle Scholar
  13. 13.
    Martinez-Rubi Y, Ashrafi B, Guan J, Kingston C, Johnston A, Simard B, Mirjalili V, Hubert P, Deng L, Young RJ (2011) ACS Appl Mater Interfaces 3:2309CrossRefGoogle Scholar
  14. 14.
    Penicaud A, Poulin P, Derre A, Anglaret E, Petit P (2005) J Am Chem Soc 127:8CrossRefGoogle Scholar
  15. 15.
    Martínez-Rubí Y, Guan J, Lin S, Scriver C, Sturgeon RE, Simard B (2007) Chem Commun 48:5146CrossRefGoogle Scholar
  16. 16.
    American Society for Testing and Materials (2008) Standard test method for tensile properties of plastics. ASTM D638Google Scholar
  17. 17.
    Kim JY, Kim SH (2006) J Polym Sci Part B: Polym Phys 44(7):1062CrossRefGoogle Scholar
  18. 18.
    Hubert P, Ashrafi B, Adhikari K, Meredith J, Vengallatore S, Guan J, Simard B (2009) Compos Sci Technol 69:2274CrossRefGoogle Scholar
  19. 19.
    Becker P, Varley R, Simon G (2002) Polymer 43:4365CrossRefGoogle Scholar
  20. 20.
    Varley RJ, Hodgkin, Simon GP (2000) J Appl Polym Sci 77:237CrossRefGoogle Scholar
  21. 21.
    Chen ZK, Yang JP, Ni QQ, Fu SY, Huang YG (2009) Polymer 50(19):4753CrossRefGoogle Scholar
  22. 22.
    Yang JP, Chen ZK, Feng QP, Deng YH, Liu Y, Ni QQ, Fu SY (2012) Compos Part B: Eng 43(1):22 ISSN 1359-8368CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2013

Authors and Affiliations

  • Behnam Ashrafi
    • 1
  • David Backman
    • 1
  • Andrew Johnston
    • 1
  • Yadienka Martinez-Rubi
    • 2
  • Benoit Simard
    • 2
  1. 1.Aerospace PortfolioNational Research Council CanadaOttawaCanada
  2. 2.Security and Disruptive Technologies PortfolioNational Research Council CanadaOttawaCanada

Personalised recommendations