Journal of Materials Science

, Volume 48, Issue 21, pp 7635–7641 | Cite as

First principles investigations of structural, electronic, elastic, and dielectric properties of KMgF3

  • G. PilaniaEmail author
  • Vinit Sharma


An ab initio study of structural, electronic, elastic, and dielectric properties of KMgF3 in cubic perovskite structure is presented in the framework of density functional theory. The calculations presented here employ generalized gradient approximation with projector augmented wave method. The fully relaxed structural parameters are found to be in reasonable agreement with available experimental data and with previous theoretical work. The independent elastic constants of cubic KMgF3 are derived from the derivative of total energy as a function of lattice strain in full detail. The bulk modulus and its first pressure derivative are obtained by fitting total energy versus volume data to a Murnaghan equation of state. The electronic band structure, total density of states, and projected density of states on each of the K, Mg, and F atoms are calculated and found to be in good agreement with previous theoretical results. First principles computed phonon dispersions for the cubic KMgF3 are reported for the first time. The imaginary part of frequency-dependent dielectric function is determined by summing over all possible transitions from occupied to unoccupied states and taking the appropriate transition matrix element into account. The Born effective charges computed by linear response within density functional perturbation theory are used together with the mode eigenvectors to decompose the lattice dielectric susceptibility tensor into contributions arising from individual IR-active phonon modes. Our results for the static and optical dielectric constant are in good agreement with previously reported experimental results.


Bulk Modulus Phonon Dispersion Valance Band Maximum Dynamical Matrix Density Functional Theory Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Discussions with Prof. R. Ramprasad at University of Connecticut are gratefully acknowledged.


  1. 1.
    Lines ME, Glass AM (1977) Principles and applications of ferroelectric and related materials. Clarendon, OxfordGoogle Scholar
  2. 2.
    Scott JF (2007) Science 315:954CrossRefGoogle Scholar
  3. 3.
    Voorhoeve RJH, Johnson DW Jr, Remeika JP, Gallagher PK (1977) Science 195:827CrossRefGoogle Scholar
  4. 4.
    Dawber M, Rabe KM, Scott JF (2005) Rev Mod Phys 77:1083CrossRefGoogle Scholar
  5. 5.
    Cohen RE (1992) Nature 358:136CrossRefGoogle Scholar
  6. 6.
    Sharma V, Pilania G, Rossetti GA Jr, Slenes K, Ramprasad R (2013) Phys Rev B 87:134109CrossRefGoogle Scholar
  7. 7.
    Nishimatsu T, Terakubo N, Mizuseki H, Kawazoe Y, Pawlak DA, Shimamura K, Ichinose N, Fukuda T (2003) Jpn J Appl Phys 42:5082CrossRefGoogle Scholar
  8. 8.
    Hörsch G, Paus HJ (1986) Opt Commun 60:69CrossRefGoogle Scholar
  9. 9.
    Fukuda T, Shimamura K, Yoshikawa A, Villora EG (2001) Opto Electron Rev 9:109Google Scholar
  10. 10.
    Dorenbos P (2000) Phys Rev B 62:15640CrossRefGoogle Scholar
  11. 11.
    Gektin AV, Krasovitskaya MI, Shiran NV (1998) Radiat Meas 29:337CrossRefGoogle Scholar
  12. 12.
    Furetta C, Santopietro F, Sanipoli C, Kitis G (2001) Appl Radiat Isot 55:533CrossRefGoogle Scholar
  13. 13.
    Van Arkel AE (1925) Physica 5:162Google Scholar
  14. 14.
    Vaitheeswaran G, Kanchana V, Kumar RS, Cornelius AL, Nicol MF, Svane A, Delin A, Johansson B (2007) Phys Rev B 76:014107CrossRefGoogle Scholar
  15. 15.
    Aguado F, Rodriguez F, Hirai S, Walsh JN, Lennie A, Redfern SAT (2008) High Press Res 28:539CrossRefGoogle Scholar
  16. 16.
    Rosenberg HM, Wigmore JK (1967) Phys Lett A 24:317CrossRefGoogle Scholar
  17. 17.
    Reshchikova LM (1969) Sov Phys Solid State 10:2019Google Scholar
  18. 18.
    Jones LEA (1979) Phys Chem Miner 4:23CrossRefGoogle Scholar
  19. 19.
    Darabont A, Neamtu C, Farcas SI, Borodi G (1996) J Cryst Growth 169:89CrossRefGoogle Scholar
  20. 20.
    Wood IG, Knight KS, Price GD, Stuart JA (2002) J Appl Crystallogr 35:291CrossRefGoogle Scholar
  21. 21.
    Heaton RA, Lin CC (1982) Phys Rev B 25:3538CrossRefGoogle Scholar
  22. 22.
    Heaton RA, Lin CC (1985) J Phys C 18:3211CrossRefGoogle Scholar
  23. 23.
    Huang GQ, Chen LF, Liu M, Xing DY (2003) J Phys Condens Matter 15:4567CrossRefGoogle Scholar
  24. 24.
    Sahnoun M, Zbiri M, Daul C, Khenata R, Baltache H, Driz M (2005) Mater Chem Phys 91:185CrossRefGoogle Scholar
  25. 25.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  26. 26.
    Kohn W, Sham L (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  27. 27.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Perderson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  29. 29.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  30. 30.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  31. 31.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  32. 32.
    Baroni S, de Gironcoli S, Corso AD, Giannozzi P (2001) Rev Mod Phys 73:515CrossRefGoogle Scholar
  33. 33.
    Gonze X, Lee C (1997) Phys Rev B 55:10355CrossRefGoogle Scholar
  34. 34.
    Kunc K, Martin RM (1982) Phys Rev Lett 48:406CrossRefGoogle Scholar
  35. 35.
    Murnaghan FD (1944) Proc Natl Acad Sci 30:244CrossRefGoogle Scholar
  36. 36.
    Remy H, Hansen H (1956) Z Anorg Allg Chem 283:277CrossRefGoogle Scholar
  37. 37.
    Chakhmouradian AR, Ross K, Mitchell RH, Swainson I (2001) Phys Chem Miner 28:277CrossRefGoogle Scholar
  38. 38.
    Lee J, Shin H, Lee J, Chung HS, Zhang QW, Saito F (2003) Mater Trans 44:1457CrossRefGoogle Scholar
  39. 39.
    Fast L, Wills JM, Johansson B, Eriksson O (1955) Phys Rev B 51:17431CrossRefGoogle Scholar
  40. 40.
    Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1998) J Appl Phys 84:4891CrossRefGoogle Scholar
  41. 41.
    Kagimura R, Singh DJ (2008) Phys Rev B 77:104113CrossRefGoogle Scholar
  42. 42.
    Daniels RR, Margaritondo G, Heaton RA, Lin CC (1983) Phys Rev B 27:3878CrossRefGoogle Scholar
  43. 43.
    Beaumont JH, Bourdillon AJ, Bordas J (1977) J Phys C 10:333CrossRefGoogle Scholar
  44. 44.
    Perry CH, Young EF (1967) J Appl Phys 38:4616CrossRefGoogle Scholar
  45. 45.
    Salatin S, Mortier R, Gesland JY, Rousseau M, Hennion B (1993) J Phys Condens Matter 5:7615CrossRefGoogle Scholar
  46. 46.
    Gajdos M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Phys Rev B 73:045112CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Materials Science and EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations