Advertisement

Journal of Materials Science

, Volume 48, Issue 21, pp 7587–7593 | Cite as

Coupled electro-mechanical properties of multiwall carbon nanotube/polypropylene composites for strain sensing applications

  • O. Zetina-Hernández
  • S. Duarte-Aranda
  • A. May-Pat
  • G. Canché-Escamilla
  • J. Uribe-Calderon
  • P. I. Gonzalez-Chi
  • F. Avilés
Article

Abstract

The electrical, mechanical, and coupled electro-mechanical (piezoresistive) properties of multiwall carbon nanotube/polypropylene (MWCNT/PP) composites at four MWCNT concentrations above electrical percolation (4–10 wt %) were investigated. The electrical conductivity of the composite increased monotonically from 0.77 to 15.0 S/m with the increase of MWCNT concentration. The elastic modulus also increased monotonically with increased MWCNT concentration with the concomitant reduction of ultimate strain. The coupled signal between electrical resistance and applied strain during tensile loading displayed a marked change toward higher sensitivity at the elastic-to-plastic transition zone of the polymer composite, which allowed the identification of polymer yielding by the sole monitoring of electrical resistance. Large ratios (of the order of 15–29) of normalized changes in electrical resistance over applied strain (“gage factor”) were found in the plastic zone, and such electro-mechanical sensitivity was higher for composites with lower MWCNT content.

Keywords

Applied Strain Gage Factor MWCNT Content Electrical Percolation MWCNT Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors acknowledge the technical support received by O. Rodríguez-Uicab during the piezoresistivity tests. This work was partially supported by CONACYT-CIAM Project # 188089.

References

  1. 1.
    Sugimoto M, Ishikawa M, Hatada K (1995) Polymer 36:3675CrossRefGoogle Scholar
  2. 2.
    Zhang H, Zhang Z (2007) Eur Polym J 43:3197CrossRefGoogle Scholar
  3. 3.
    Carmona F, Ravier J (2002) Carbon 40:151CrossRefGoogle Scholar
  4. 4.
    Li Z-M, Xu X-B, Lu A, Shen K-Z, Huang R, Yang M-B (2004) Carbon 42:423CrossRefGoogle Scholar
  5. 5.
    Tjong SC, Liang GD, Bao SP (2008) Polym Eng Sci 48:177CrossRefGoogle Scholar
  6. 6.
    Chekanov Y, Ohnogi R, Asai S, Sumita M (1999) J Mater Sci 34:5589. doi: 10.1023/A:1004737217503 CrossRefGoogle Scholar
  7. 7.
    Tjong SC, Liang GD, Bao SP (2007) Scripta Mater 57:461CrossRefGoogle Scholar
  8. 8.
    Shen J, Champagne MF, Yang Z, Yu Q, Gendron R, Guo S (2012) Composites A 43:1448CrossRefGoogle Scholar
  9. 9.
    Li J, Barry CF, Ngabonziza Y (2011) Acta Mech 220:289CrossRefGoogle Scholar
  10. 10.
    Menzer K, Krause B, Boldt R, Kretzschmar B, Weidisch R, Pötschke P (2011) Compos Sci Technol 71:1936CrossRefGoogle Scholar
  11. 11.
    Ezat GS, Kelly AL, Mitchell SC, Youseffi M, Coates PD (2012) Polym Compos 33:1376CrossRefGoogle Scholar
  12. 12.
    Wang X, Wang S, Chung DDL (1999) J Mater Sci 34:2703. doi: 10.1023/A:1004629505992 CrossRefGoogle Scholar
  13. 13.
    Monti M, Natali M, Petrucci R, Kenny JM, Torre L (2011) Polym Compos 32:766CrossRefGoogle Scholar
  14. 14.
    Heeder N, Shukla A, Chalivendra V, Yang S (2012) J Mater Sci 47:3808. doi: 10.1007/s10853-011-6235-8 CrossRefGoogle Scholar
  15. 15.
    Pötschke P, Kobashi K, Villmow T, Andres T, Paiva MC, Covas JA (2011) Compos Sci Technol 71:1451CrossRefGoogle Scholar
  16. 16.
    Loyola BR, La Saponara V, Loh KJ (2010) J Mater Sci 45:6786. doi: 10.1007/s10853-010-4775-y CrossRefGoogle Scholar
  17. 17.
    Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) Smart Mater Struct 15:737CrossRefGoogle Scholar
  18. 18.
    Li C, Thostenson ET, Chou T-W (2008) Compos Sci Technol 68:1227CrossRefGoogle Scholar
  19. 19.
    Chung DDL (2001) Applied materials science: applications of engineering materials in structural, electronics, thermal, and other industries. CRC Press, Boca RatonCrossRefGoogle Scholar
  20. 20.
    Kovalchuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) J Mater Sci 43:7132. doi: 10.1007/s10853-008-3029-8 CrossRefGoogle Scholar
  21. 21.
    Bhuiyan MA, Pucha RV, Worthy J, Karevan M, Kalaitzidou K (2013) Compos Struct 95:80CrossRefGoogle Scholar
  22. 22.
    Zhao J, Dai K, Liu C, Zheng G, Wang B, Liu C, Chen J, Shen C (2013) Composites A 48:129CrossRefGoogle Scholar
  23. 23.
    Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Polymer 44:2373CrossRefGoogle Scholar
  24. 24.
    Avila-Orta CA, Medellín-Rodríguez FJ, Davila Rodríguez MV, Aguirre-Figueroa YA, Yoon K, Hsiao BS (2007) J Appl Polym Sci 106:2640CrossRefGoogle Scholar
  25. 25.
    Yang B-X, Shi J-H, Pramoda KP, Goh SH (2008) Compos Sci Technol 68:2490CrossRefGoogle Scholar
  26. 26.
    Park M, Kim H, Youngblood JP (2008) Nanotechnology 19:055705CrossRefGoogle Scholar
  27. 27.
    Simmons JG (1963) J Appl Phys 34:2581CrossRefGoogle Scholar
  28. 28.
    Zhang R, Baxendale M, Peijs T (2007) Phys Rev B 76:195433CrossRefGoogle Scholar
  29. 29.
    Gao L, Thostenson ET, Zhang Z, Chou T-W (2009) Carbon 47:1381CrossRefGoogle Scholar
  30. 30.
    Ku-Herrera JJ, Avilés F (2012) Carbon 50:2592CrossRefGoogle Scholar
  31. 31.
    Nanni F, Mayoral BL, Madau F, Montesperelli G, McNally T (2012) Compos Sci Technol 72:1140CrossRefGoogle Scholar
  32. 32.
    Rahman R, Servati P (2012) Nanotechnology 23:055703CrossRefGoogle Scholar
  33. 33.
    Oliva-Avilés AI, Avilés F, Sosa V (2011) Carbon 49:2989CrossRefGoogle Scholar
  34. 34.
    Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RA (2005) Polymer 46:4405CrossRefGoogle Scholar
  35. 35.
    Socher R, Krause B, Müller MT, Boldt R, Pötschke P (2012) Polymer 53:495CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • O. Zetina-Hernández
    • 1
  • S. Duarte-Aranda
    • 1
  • A. May-Pat
    • 1
  • G. Canché-Escamilla
    • 1
  • J. Uribe-Calderon
    • 1
  • P. I. Gonzalez-Chi
    • 1
  • F. Avilés
    • 1
  1. 1.Centro de Investigación Científica de Yucatán A.C.Unidad de MaterialesMéridaMexico

Personalised recommendations