Journal of Materials Science

, Volume 48, Issue 21, pp 7510–7517 | Cite as

Morphological change induced with NaOH–water solution for ramie fiber: change mechanism and effects of concentration and temperature

  • Takato Nakano
  • Takashi Tanimoto
  • Tsuginosuke Hashimoto


The morphology of ramie fiber treated with NaOH–water solutions at various concentrations was observed with an epi-illumination microscope (EIM) equipped with a charge-coupled device (CCD) camera. The crystallinity was measured by X-ray diffraction. The morphological changes in length and width were quantified using image analysis. Changes in morphology were noted for samples treated with NaOH–water solutions at room temperature in the narrow concentration range of 0.08 < [NaOH] ≦ 0.12. For samples cooled at −5 °C after treatment, the morphological changes started at a lower concentration, i.e., at [NaOH] = 0.05. The change was observed as contraction in length and swelling in width. The mechanism for this dimensional change related closely not to the conformation of the whole microfibril but to the crystallinity of cellulose chains that had been de-crystallized by the NaOH–water solution: the calculated bond angle was too small for a zigzag conformation of the whole microfibril.


Cellulose Water Solution Amorphous Region Cellulose Chain Crystallinity Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Prof. Junji Sugiyama, Research Institute for Sustainable Humanosphere, Kyoto University for providing the ramie.


  1. 1.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) J Mater Sci 45:1. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  2. 2.
    Revol J-F, Goring DAI (1981) J Appl Polym Sci 16:1275CrossRefGoogle Scholar
  3. 3.
    Murase H, Sugiyama J, Saiki H, Harada H (1988) Mokuzai Gakkaishi 34:965Google Scholar
  4. 4.
    Okano T, Sarko A (1984) J Appl Polym 29:4175CrossRefGoogle Scholar
  5. 5.
    Okano T, Sarko A (1985) J Appl Polym 30:325CrossRefGoogle Scholar
  6. 6.
    Hayashi J, Yamada T, Shimizu Y-L (1989) In: Schuerch C (ed) proceedings of the tenth cellulose conference on cellulose and wood: chemistry and technology, p 77. Wiley, New YorkGoogle Scholar
  7. 7.
    Nishimura H, Okano T, Sarko A (1991) Macromolecules 24:759CrossRefGoogle Scholar
  8. 8.
    Nishimura H, Okano T, Sarko A (1991) Macromolecules 24:771CrossRefGoogle Scholar
  9. 9.
    Fengel D, Jakob H, Strobel C (1995) Holzforschung 49:505CrossRefGoogle Scholar
  10. 10.
    O’sullivan AC (1997) Cellulose 4:173CrossRefGoogle Scholar
  11. 11.
    Kamide K, Okajima K, Kowsaka K (1985) Polym J 17:701CrossRefGoogle Scholar
  12. 12.
    Kamide K, Kowsaka K, Okajima K (1985) Polym J 17:707CrossRefGoogle Scholar
  13. 13.
    Cai J, Zhang L (2006) Biomacromolecules 7:183CrossRefGoogle Scholar
  14. 14.
    Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Chem Phys Chem 8:1572CrossRefGoogle Scholar
  15. 15.
    Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Adv Mater 19:821CrossRefGoogle Scholar
  16. 16.
    Roy C, Budtova T, Navard P, Bedue O (2001) Biomacromolecules 2:687CrossRefGoogle Scholar
  17. 17.
    Davidson GF (1934) J Text Inst 25:174CrossRefGoogle Scholar
  18. 18.
    Sobue H, Kiessing H, Hess K (1934) Z Phys Chem B 43:309Google Scholar
  19. 19.
    Watanabe S, Kimura K, Akahori T (1968) Bull Facul Eng Hokkaido Univ 47:121Google Scholar
  20. 20.
    LeMoigne N, Navard P (2010) Cellulose 17:31CrossRefGoogle Scholar
  21. 21.
    LeMoigne N, Bikard J, Navard P (2010) Cellulose 17:507CrossRefGoogle Scholar
  22. 22.
    Stöchmann VE (1971) Tappi 54:2033Google Scholar
  23. 23.
    Stöchmann VE (1971) Tappi 54:2038Google Scholar
  24. 24.
    Nakano T (1989) J Jpn Wood Res Soc 35:431Google Scholar
  25. 25.
    Nakano T (1989) J Soc Rheol, Jpn 16:104–110Google Scholar
  26. 26.
    Ishikura Y, Nakano T (2007) J Wood Sci 53:175CrossRefGoogle Scholar
  27. 27.
    Tanimoto Y, Nakano T (2012) Carbohydr Polym 87:2145CrossRefGoogle Scholar
  28. 28.
    Tanimoto Y, Nakano T (2013) Mater Sci Eng C33:1236Google Scholar
  29. 29.
    Voronova et al (2004) Fiber Chemistry 36:15Google Scholar
  30. 30.
    Ray D, Sarkar BK (2001) J Appl Polym Sci 80:1013CrossRefGoogle Scholar
  31. 31.
    Nishiyama H, Kim U, Kim D, Katsumata K, May RP, Langan P (2003) Biomacromolecules 4:1013CrossRefGoogle Scholar
  32. 32.
    Sao KP, Samantary B, Bhattacherjee S (1996) J Appl Polym Sci 60:919CrossRefGoogle Scholar
  33. 33.
    Mansikkamäki P, Lahtinen M, Rissanen K (2007) Carbohyd Polym 68:35CrossRefGoogle Scholar
  34. 34.
    Revol JF, Dietrich A, Goring DAI (1987) Can J Chem 65:1724CrossRefGoogle Scholar
  35. 35.
    French AD, Cintron MS (2013) Cellulose 20:583CrossRefGoogle Scholar
  36. 36.
    Horii F, Hirai A, Kitamura R (1982) Polym Bull 8:163CrossRefGoogle Scholar
  37. 37.
    Miura K, Nakano T (2012) In: Abstracts of the 62nd annual meeting of the Japan Wood Research Society. K16-06-1015Google Scholar
  38. 38.
    Kamide K, Okajima K, Kowsaka K (1992) Polymer J 24:71CrossRefGoogle Scholar
  39. 39.
    Yamane C, Saito M, Okajima K (1996) J Soc Fiber Sci Technol, Jpn 52:310Google Scholar
  40. 40.
    Nakano T, Sugiyama J, Norimoto M (2000) Holzforschung 54:315CrossRefGoogle Scholar
  41. 41.
    Nakano T (2010) Cellulose 17:711CrossRefGoogle Scholar
  42. 42.
    Watanabe T, Nakano T (2012) Abstracts of the 62nd annual meeting of the Japan wood research society. A16-02-1500Google Scholar
  43. 43.
    Qi H, Chang C, Zhang L (2008) Cellulose 15:779CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Takato Nakano
    • 1
  • Takashi Tanimoto
    • 2
  • Tsuginosuke Hashimoto
    • 1
  1. 1.Laboratory of Biomaterials Design, Division of Forest and Biomaterials ScienceGraduate School of Agriculture, Kyoto UniversityKitashirakawa, KyotoJapan
  2. 2.Asahi Woodtech CompanyChuoh-ku, OsakaJapan

Personalised recommendations