Skip to main content
Log in

Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnetic polyurethane elastomer nanocomposites were prepared by incorporating pure and thiodiglycolic acid (TDGA) surface-modified Fe3O4 nanoparticles into polyurethane matrix using in situ polymerization method. Surface modification of Fe3O4 nanoparticles was carried out to enhance the dispersion of the nanoparticles in polyurethane matrix. Pure and TDGA surface-modified Fe3O4 nanoparticles were synthesized by coprecipitation method and characterized by Fourier Transform Infrared Spectroscopy, X-ray diffraction, and Vibrating Sample Magnetometer. The morphology and dispersion of the nanoparticles in the magnetic polyurethane elastomer nanocomposites were studied by Scanning Electron Microscope. It was observed that surface modification of Fe3O4 nanoparticles with TDGA enhanced the dispersion of the nanoparticles in polyurethane matrices. Furthermore, effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposite was investigated by thermogravimetric analysis, dynamic mechanical thermal analysis, and an Instron type Tensile Tester. It was concluded that surface modification of Fe3O4 nanoparticles allowed preparation of the magnetic nanocomposites with better mechanical properties. Moreover, study of fibroblast cells interaction with magnetic nanocomposites showed that the products can be a good candidate for biomedical application due to their in vitro biocompatibility and non-toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM (2001) Nat Biotechnol 19:1141

    Article  CAS  Google Scholar 

  2. Qu J, Liu G, Wang Y, Hong R (2010) Adv Powder Technol 21:461

    Article  CAS  Google Scholar 

  3. Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Edit 46:1222

    Article  CAS  Google Scholar 

  4. Rossi LM, Silva FP, Vono LLR, Kiyohara PK, Duarte EL, Itri R, Landers R, Machado G (2007) Green Chem 9:379

    Article  CAS  Google Scholar 

  5. Lee JH, Jun Y, Yeon SI, Shin JS, Cheon J (2006) Angew Chem Int Edit 118:8340

    Google Scholar 

  6. Mohapatra S, Pramanik, Mukherjee S, Ghosh SK, Pramanik P (2007) J Mater Sci 42:7566. doi:10.1007/s10853-007-1597-7

    Article  CAS  Google Scholar 

  7. Wu W, He Q, Jiang C (2008) Nanoscale Res Lett 3:397

    Article  CAS  Google Scholar 

  8. Dietrich S, Chandra S, Georgi C, Thomas S, Makarov D, Schulze S, Hietschold M, Albrecht M, Bahadur D, Lang H (2012) Mater Chem Phys 132:292

    Article  CAS  Google Scholar 

  9. Yan H, Zhang J, You C, Song Z, Yu B, Shen Y (2009) Mater Chem Phys 113:46

    Article  CAS  Google Scholar 

  10. Sindhu S, Jegadesan S, Parthiban A, Valiyaveettil S (2006) J Magn Magn Mater 296:104

    Article  CAS  Google Scholar 

  11. Mai Y, Yu Z (2006) Polymer Nanocomposites. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  12. Sláma J, Grusková A, Vícen R, Vícenová S, Dosoudil R, Franek J (2003) J Magn Magn Mater 254:642

    Article  Google Scholar 

  13. Pant R, Krishna R, Negi P, Ravat K, Dhawan U, Gupta S, Suri D (1995) J Magn Magn Mater 149:10

    Article  CAS  Google Scholar 

  14. Zhou L, Li G, An T, Li Y (2010) Res Chem Intermediat 36:277

    Article  CAS  Google Scholar 

  15. Xu XX, Zheng YF (2006) Key Eng Mater 324:659

    Article  Google Scholar 

  16. Razzaq MY, Anhalt M, Frormann L, Weidenfeller B (2007) Mat Sci Eng A 444:227

    Article  Google Scholar 

  17. Pirmoradi FN, Cheng L, Chiao M (2009) J Micromech Microeng 20:015032

    Article  Google Scholar 

  18. Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2009) Polym Advan Technol 20:550

    Article  CAS  Google Scholar 

  19. Huang X, Lu M, Zhang X, Wen G, Zhou Y, Fei L (2012) Scripta Mater 67:613

    Article  CAS  Google Scholar 

  20. Mammeri F, Le Bourhis E, Rozes L, Sanchez C (2005) J Mater Chem 15:3787

    Article  CAS  Google Scholar 

  21. Lau AKT (2010) Multifunctional polymer nanocomposites. CRC PressI, Boca Raton

    Google Scholar 

  22. Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M (2004) Polymer 45:2231

    Article  CAS  Google Scholar 

  23. Santerre J, Woodhouse K, Laroche G, Labow R (2005) Biomaterials 26:7457

    Article  CAS  Google Scholar 

  24. Yeganeh H, Barikani M, Noei Khodabadi F (2000) Eur Polym J 36:2207

    Article  CAS  Google Scholar 

  25. Kuan HC, Chuang WP, Ma CCM, Chiang CL, Wu HL (2005) J Mater Sci 40:179. doi:10.1080/02844310600763725

    Article  CAS  Google Scholar 

  26. Gogolewski S (1997) Colloid Polym Sci 267:1865

    Google Scholar 

  27. Ashjari M, Mahdavian AR, Ebrahimi NG, Mosleh Y (2010) J Inorg Organomet Polym 20:213

    Article  CAS  Google Scholar 

  28. Guo Z, Park S, Hahn HT, Wei S, Moldovan M, Karki AB, Young DP (2007) J Appl Phys 101:511

    Google Scholar 

  29. Papaphilippou P, Christodoulou M, Marinica OM, Taculescu A, Vekas L, Chrissafis K, Krasia-Christoforou T (2012) ACS Appl Mater Inter 4:2139

    Article  CAS  Google Scholar 

  30. Khalafalla S, Reimers G (1980) Magn, IEEE Trans Magn 16:178

    Article  Google Scholar 

  31. Barikani M, Hepburn C (1986) Isocyanurate crosslinking as a means of producing thermally stable polyurethane elastomers. Cell Polym 5:169

    CAS  Google Scholar 

  32. Vaidyanathan G, Sendhilnathan S, Arulmurugan R (2007) J Magn Magn Mater 313:293

    Article  CAS  Google Scholar 

  33. Drygas M, Janik JF (2012) Mater Chem Phys 133(2–3):932

    Article  CAS  Google Scholar 

  34. Shamim N, Hong L, Hidajat K, Uddin M (2007) Colloids Surf B 55:51

    Article  CAS  Google Scholar 

  35. Nyquist RA, Kagel RO (1971) Handbook of infrared and raman spectra of inorganic compounds and organic salts: infrared spectra of inorganic compounds. Academic Press, New York

    Google Scholar 

  36. Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, Wu MT, Shieh DB (2005) Biomaterials 26:729

    Article  CAS  Google Scholar 

  37. Chantrell R, Popplewell J, Charles S (1978) Magn IEEE Trans Magn 14:975

    Article  Google Scholar 

  38. Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) J Colloid Interf Sci 212:49

    Article  CAS  Google Scholar 

  39. Shafi KVPM, Gedanken A, Prozorov R, Balogh J (1998) Chem Mater 10:3445

    Article  CAS  Google Scholar 

  40. Lin CR, Chu YM, Wang SC (2006) Mater Lett 60:447

    Article  CAS  Google Scholar 

  41. Goya G, Berquo T, Fonseca F, Morales M (2003) J Appl Phys 94:3520

    Article  CAS  Google Scholar 

  42. Massart R (1981) IEEE Trans Magn 17:1247

    Article  Google Scholar 

  43. Wang D, Zhang G, Zhang Y, Gao Y, Zhao Y, Zhou C, Zhang Q, Wang X (2007) J Appl Polym Sci 103:417

    Article  CAS  Google Scholar 

  44. Menard KP (1999) Dynamic mechanical analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  45. Yeganeh H, Jamshidi H, Jamshidi S (2007) Polym Int 56:41

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Iran polymer and petrochemical institute (IPPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Mohammadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, A., Barikani, M. & Barmar, M. Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites. J Mater Sci 48, 7493–7502 (2013). https://doi.org/10.1007/s10853-013-7563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7563-7

Keywords

Navigation