Skip to main content
Log in

Control of the temperature coefficient of the DC resistivity in polymer-based composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the roles of polymer matrices and filler additives in controlling the positive temperature coefficient (PTC)/negative temperature coefficient (NTC) behavior of DC resistivity at high temperature for semicrystalline ethylene vinyl acetate copolymer, amorphous acrylonitrile butadiene copolymer, and their blend composites filled with different carbon fillers like Conductex carbon black, Printex carbon black, and short carbon fiber have been investigated. It is seen that the PTC/NTC behavior of resistivity depends on the characteristics of both polymer matrices and filler additives. The anomaly in the results are due to polymer crystallinity, shape and size of fillers, and their thermal expansion coefficient, that play major role in controlling the PTC/NTC of resistivity at high temperature for the composites. Finally, reproducibility of composite resistivity has been evaluated with their some proposed practical applications. These composites can be used as both PTC and NTC thermistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Rahaman M, Chaki TK, Khastgir D (2011) Polym Compos 32:1790

    Article  CAS  Google Scholar 

  2. Sohi NJS, Rahaman M, Khastgir D (2011) Polym Compos 32:1148

    Article  CAS  Google Scholar 

  3. Shuying Y, Karen L, Azalia L, Heinrich DF, Robert J (2005) Compos Part A 36:691

    Article  Google Scholar 

  4. Rahaman M, Chaki TK, Khastgir D (2011) Shielding with conductive polymer and carbon fiber composites. SPE Plast Res Online doi: 10.1002/spepro.003964

  5. Al-Ghamdi AA, El-Tantawy F (2010) Compos Part A 41:1693

    Article  Google Scholar 

  6. Nayak L, Rahaman M, Khastgir D, Chaki TK (2011) Polym Bull 67:1029

    Article  CAS  Google Scholar 

  7. Rahaman M, Nayak L, Chaki TK, Khastgir D (2012) Adv Sci Lett 18:54

    CAS  Google Scholar 

  8. Magioli M, Soares BG, Sirqueira AS, Rahaman M, Khastgir D (2012) J Appl Polym Sci 125:1476

    Article  CAS  Google Scholar 

  9. Hussain M, Yong-Ho C, Koichi N (2001) Compos Part A 32:1689

    Article  Google Scholar 

  10. Rahaman M, Chaki TK, Khastgir D (2013) J Appl Polym Sci 128:161

    Article  CAS  Google Scholar 

  11. Droval G, Feller JF, Salagnac P, Glouannec P (2008) Conductive polymer composites with double percolated architecture of carbon nanoparticles and ceramic microparticles for high heat dissipation and sharp PTC switching. Smart Mater Struct 17:025011, p10

    Google Scholar 

  12. Rahaman M, Chaki TK, Khastgir D (2010) Adv Mater Res 123–125:447

    Article  Google Scholar 

  13. Kang PH, Nho YC (2001) J Ind Eng Chem 7:199

    CAS  Google Scholar 

  14. Saraydin D, Karadag E, Güven O (1997) Polym J 29:631

    Article  CAS  Google Scholar 

  15. El-Tantawy F (2001) Eur Polym J 37:565

    Article  CAS  Google Scholar 

  16. Tagachi H, Matsu-ura S, Nagao M, Kido H (1999) Phys B 270:325

    Article  Google Scholar 

  17. Ghosh P, Chakrabarti A (2000) Eur Polym J 36:1043

    Article  CAS  Google Scholar 

  18. Soo-Jin PH, Min-Kang S, Jae-Rock L (2001) Carbon Sci 2:159

    Google Scholar 

  19. Wong CP, Shijian L (2000) Investigation on effect of carbon black and polymer matrix on conductive polymer composites with positive temperature coefficient. International Symposium on Advanced Packaging Materials p 343

  20. Xu HP, Wu YH, Yang DD, Wang JR, Xie HQ (2011) Rev Adv Mater Sci 27:173

    Google Scholar 

  21. Rahaman M, Chaki TK, Khastgir D (2011) J Mater Sci 46:3989. doi:10.1007/s10853-011-5326-x

    Article  CAS  Google Scholar 

  22. Wang X, Zhang G (2008) J Mater Sci Mater Electron 19:1105

    Article  CAS  Google Scholar 

  23. Selvin TP, Adedigba AA, Mamdouh A, Muataz AA, De SK, Rahaman M, Chaki TK, Khastgir D, Bandyopadhyay S (2012) J Mater Sci 47:3344. doi:10.1007/s10853-011-6174-4

    Article  Google Scholar 

  24. Rahaman M, Chaki TK, Khastgir D (2012) Adv Sci Lett 10:115

    Article  CAS  Google Scholar 

  25. http://www.bpf.co.uk/Plastipedia/Polymers/EVA.aspx. Accessed 10 Jan 2012

  26. MIL-HDBK (1984) Military standardization handbook. Thermal expansion. Linear thermal expansion of typical elastomers and common alloys. 149B, p 63

  27. http://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html. Accessed 10 Jan 2012

  28. Sau KP, Chaki TK, Khastgir D (1999) J Appl Polym Sci 71:887

    Article  CAS  Google Scholar 

  29. Sau KP, Chaki TK, Khastgir D (1998) Polymer 39:6461

    Article  CAS  Google Scholar 

  30. Mattson B, Stenberg B (1992) Rubber Chem Technol 65:315

    Article  CAS  Google Scholar 

  31. Zhang C, Ma CA, Wang P, Sumita M (2005) Carbon 43:2544

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Aeronautic Research and Development Board (ARDB), Government of India, for their financial support to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mostafizur Rahaman or Dipak Khastgir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahaman, M., Chaki, T.K. & Khastgir, D. Control of the temperature coefficient of the DC resistivity in polymer-based composites. J Mater Sci 48, 7466–7475 (2013). https://doi.org/10.1007/s10853-013-7561-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7561-9

Keywords

Navigation