Skip to main content
Log in

Deformation mechanism of aluminum–magnesium alloys at elevated temperatures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The study concentrates on the formulation of a reliable constitutive equation for plastic forming of Al–Mg-based alloys above 400 °C and at strain rates above 10−3 s−1. The deformation mechanisms of two coarse-grained Al–Mg alloys, also known as AA5182, with grain sizes 21 and 37 μm were investigated. They exhibited optimum extension at 10−2 s−1 and at T equal to 425 °C and above 475 °C, respectively, with uniform elongation above 300 %. The strain-rate sensitivity and the stress exponent were equal to 0.25 and 4, respectively, suggesting that the deformation is controlled by the solute drag of gliding dislocations whereas dislocation climb occurs also in grains whose orientation renders them hard. Grain boundary sliding may contribute to a small extent in the deformation process. The threshold stress was found to be small and the activation energy lies between 144 and 136 kJ mol−1, i.e., that of Al self-diffusion and Mg diffusion in Al. It is concluded that coarse-grained materials may well fulfill the industrial requirements of forming and within this scope, the use of the low purity coarse-grained Al–Mg-based alloys of the AA5182 type would constitute the next step in the course for further cost reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sherby OD, Wadsworth J (1989) Prog Mater Sci 33:169

    Article  CAS  Google Scholar 

  2. Langdon TG (2005) Z Metallkd 96:522

    CAS  Google Scholar 

  3. Figueiredo RB, Kawasaki M, Xu C, Langdon TG (2008) Mater Sci Eng A 493:104

    Article  Google Scholar 

  4. Valiev RZ, R.K. Islamgaliev RK, Alexandrov IV. Prog Mater Sci 2000;45:103

  5. Taleff EM, Henshall GA, Nieh TG, Leseur DR, Wadsworth J (1998) Metall Mater Trans A 29:1081

    Google Scholar 

  6. Woo SS, Kim YR, Shin DH, Kim WJ (1997) Scripta Mater 37:1351

    Article  CAS  Google Scholar 

  7. Taleff EM, Hector LG Jr, Bradley JR, Verma R, Krajewski PE (2009) Acta Mater 57:2812

    Article  CAS  Google Scholar 

  8. Soer WA, Chezan AR, De Hosson JThM (2006) Acta Mater 54:3827

    Article  CAS  Google Scholar 

  9. Chen Z, Kazantzis AV, De Hosson JThM. Mat.-wiss u Werkstofftech 2008;39:259

    Google Scholar 

  10. Smallman RE, Bishop RJ (1995) Metals and materials: science, processes and applications. Butterworth-Heinemann Ltd, Oxford, p 206

    Google Scholar 

  11. Chang JK, Takata K, Ichitani K, Taleff EM (2010) Metall Mater Trans A 41:1942

    Article  Google Scholar 

  12. Kulas M-A, Green WP, Taleff EM, Krajewski PE, McNelley TR (2005) Metall Mater Trans A 36:1249

    Article  Google Scholar 

  13. Taleff EM, Nevland PJ, Krajewski PE (2001) Metall Mater Trans A 32:1119

    Article  Google Scholar 

  14. Hsiao IC, Huang JC (2002) Metall Mater Trans A 33:1373

    Article  Google Scholar 

  15. Mohamed FA, Langdon TG (1974) Acta Metall 22:779

    Article  CAS  Google Scholar 

  16. Sherby OD, Burke PM (1968) Prog Mater Sci 13:323

    Article  Google Scholar 

  17. Köster W (1948) Z Metallkd 39:1

    Google Scholar 

  18. Yavari P, Langdon TG (1982) Acta Metall 30:2181

    Article  CAS  Google Scholar 

  19. Sherby OD, Taleff EM (2002) Mater Sci Eng, A 322:89

    Article  Google Scholar 

  20. Du Y, Chang YA, Huang B, Gong W, Jin Z, Xu H, Yuan Z, Liu Y, He Y, Xie F-Y (2003) Mater Sci Eng A 363:140

    Article  Google Scholar 

  21. Simonovic D, Sluiter MH (2009) Phys Review B 79:054304

    Article  Google Scholar 

  22. Kulas M-A, Green WP, Taleff EM, Krajewski PE, McNelley TR (2006) Metall Mater Trans A 37:645

    Article  Google Scholar 

  23. Green WP, Kulas M-A, Niazi A, Oishi K, Taleff EM, Krajewski PE, McNelley TR (2006) Metall Mater Trans A 37:2727

    Article  Google Scholar 

  24. Mohamed FA (1983) J Mater Sci 18(2):582

    Article  Google Scholar 

  25. Chen ZG, Kazantzis AV, De Hosson JThM. (in preparation)

  26. Barrett CR, Ardell AJ, Sherby OD (1964) Trans ASM 20:200

    Google Scholar 

  27. Bae DH, Ghosh AK (2000) Acta Mater 48:1207

    Article  CAS  Google Scholar 

  28. King HW (1966) J Mater Sci 1:79. doi:10.1023/A:1018695610937

    Article  CAS  Google Scholar 

  29. Weertman, J, Weertman JR, In: Dislocations in Solids, Vol. 3, ed. F.R.N. Nabarro (North-Holland, Amsterdam, 1980), Chapter 8, p.3

  30. Hirth JP, Zbib HM, Lothe J (1998) Modelling Simul. Mater. Sci. Eng. 6:165

    Article  Google Scholar 

  31. Yoshinaga H, Toma K, Abe K, Morozumi S (1971) Philos Mag 23:1387

    Article  CAS  Google Scholar 

  32. Eshelby JD (1949) Proc Roy Soc A62:307

    Google Scholar 

  33. McNelley TR, Michel DJ, Salama A (1989) Scripta Metall 23:1657

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out under the project number MC4.05219 in the framework of the Research Program of the Materials innovation institute M2i (www.m2i.nl), the former Netherlands Institute for Metals Research. We gratefully acknowledge the experimental efforts of our Bachelor students J. Bijlsma and H. Kroezen and we thank Prof. Eric M. Taleff of the University of Texas at Austin for his help and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Th. M. De Hosson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazantzis, A.V., Chen, Z.G. & De Hosson, J.T.M. Deformation mechanism of aluminum–magnesium alloys at elevated temperatures. J Mater Sci 48, 7399–7408 (2013). https://doi.org/10.1007/s10853-013-7555-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7555-7

Keywords

Navigation