Journal of Materials Science

, Volume 48, Issue 22, pp 7812–7826 | Cite as

The effect of relative humidity and evaporation rate on electrospinning: fiber diameter and measurement for control implications

  • Yunshen Cai
  • Michael Gevelber
Polymer Fibers


This paper presents an experimental study of the influence that relative humidity and evaporation rate have on the electrospinning process in terms of fiber diameter, process measurements, and selection of operating regime (applied voltage and flow rate) for polyethylene oxide/water (aqueous) solutions and poly(vinylpyrrolidone)/alcohol (non-aqueous) solutions. Poly(vinylpyrrolidone) alcohol solutions are studied to understand the separate influence of relative humidity and evaporation rate. Correlations are developed that relate measurable process parameters (jet diameter, charge density) as well as relative humidity and evaporation rate to fiber diameter. In addition, the influence that relative humidity has on selection of operating regime to achieve desired fiber diameter and maximum production rate is presented.


Evaporation Rate Fiber Diameter Operating Regime Electrospinning Process Electrospun Nanofibers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the funding support from the NSF (CMMI0826106) and Army (W911QY-11-1-0014), and the contributions of Thierry Desire, David Ouk, Sarah Provencher, Vicki Liu, and Michael Manion.


  1. 1.
    Doshi J, Reneker DH (1995) Electrost J 35:151CrossRefGoogle Scholar
  2. 2.
    Srinivasan G, Reneker DH (1995) Polymer Int 36:195CrossRefGoogle Scholar
  3. 3.
    Matthews JA et al (2002) Biomacromolecules 3:232CrossRefGoogle Scholar
  4. 4.
    Matthews JA et al (2003) J Bioactive Compat Polym 18:125CrossRefGoogle Scholar
  5. 5.
    Boland ED et al (2004) Front Biosci 9:1422CrossRefGoogle Scholar
  6. 6.
    Kwoun SJ, Lec RM, Han B and Ko FK (2000) In: The 2000 IEEE/EIA International Frequency Control Symposium and Exhibition, 7–9 June, 2000. The Westin Crown Center, Kansas City, Missouri, USAGoogle Scholar
  7. 7.
    Wang XY et al (2002) Nano Lett 2:1273CrossRefGoogle Scholar
  8. 8.
    Han L et al (2009) MRS Proceedings, Symposium WW: Polymer nanofibers—fundamental studies and emerging applications. doi: 10.1557/PROC-1240-WW09-27
  9. 9.
    Mertz T et al (2011) MRS Proceedings, Symposium MM: Organic biolelectronics and photonics for sensing and regulation. doi: 10.1557/opl.2011.877
  10. 10.
    Yan X, Gevelber M (2010) ASME dynamic systems and control conference, vol 2, p 51. doi: 10.1115/DSCC2010-4201
  11. 11.
    Taylor GI (1966) Proc R Soc Lond Ser A 291:159CrossRefGoogle Scholar
  12. 12.
    Yarin AL, Koombhongse S, Reneker DH (2007) Polymer 48:6913CrossRefGoogle Scholar
  13. 13.
    Reneker DH, Yarin AL (2008) Polymer 49:2387CrossRefGoogle Scholar
  14. 14.
    Yarin AL (1993) Free liquid jets and films: hydrodynamics and rheology. Longman/Wiley, Harlow/New YorkGoogle Scholar
  15. 15.
    Hohman MM et al (2001) Phys Fluids 13(8):2201CrossRefGoogle Scholar
  16. 16.
    Hohman MM et al (2001) Phys Fluids 13(8):2221CrossRefGoogle Scholar
  17. 17.
    Feng JJ (2002) Am Inst Phys. doi: 10.1063/1.1510664
  18. 18.
    De Vrieze S et al (2009) J Mater Sci. doi: 10.1007/s10853-008-3010-6
  19. 19.
    Tripatanasuwan S, Zhong Z, Reneker DH (2007) Polymer 48:5742. doi: 10.1016/j.polymer.2007.07.045 CrossRefGoogle Scholar
  20. 20.
    Huang L et al (2011) J Polym Sci, Part B: Polym Phys 49:1734CrossRefGoogle Scholar
  21. 21.
    Fridrikh SV et al (2003) Phys Rev Lett 90(14):144502Google Scholar
  22. 22.
    Helgeson ME et al (2006) Am Inst Chem Eng. doi: 10.1002/aic.11056
  23. 23.
    Rutledge GC, Fridrikh SV (2007) Adv Drug Deliv Rev 59:1384CrossRefGoogle Scholar
  24. 24.
    Yarin AL (2001) Am Inst Phys. doi: 10.1063/1.1408260
  25. 25.
    Greenspan L (1997) J Res Natl Bur Stand A 81A:89CrossRefGoogle Scholar
  26. 26.
    Yan X (2011) PhD thesis, Boston UniversityGoogle Scholar
  27. 27.
    Yan X, Gevelber M (2010) J Electrost 68:458CrossRefGoogle Scholar
  28. 28.
    Jayjock MA (1994) Am Ind Hyg Assoc J 55:230CrossRefGoogle Scholar
  29. 29.
    Yarin AL (2001) Am Inst Phys. doi: 10.1063/1.1333035
  30. 30.
    Shin YM et al (2001) Polymer 42(25):9955CrossRefGoogle Scholar
  31. 31.
    Yu JH, Fridrikh SV, Rutledge GC (2006) Polymer 47(13):4789CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBoston UniversityBostonUSA

Personalised recommendations