Advertisement

Journal of Materials Science

, Volume 48, Issue 20, pp 7125–7133 | Cite as

Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing

  • Thuy Thi Thu Nguyen
  • Chiranjit Ghosh
  • Seong-Gu Hwang
  • Lam Dai Tran
  • Jun Seo Park
Article

Abstract

Curcumin (Cur) is a well-known extract of the root of Curcuma longa L. that has multi biological functions such as anti-oxidation, anti-inflammatory, anti-cancer, and wound healing properties. In the present study, poly (lactic acid) (PLA) nanofibers were used as a carrier for Cur because PLA nanofibers are biocompatible and have a high-specific surface area and high porosity, which can enhance the functional properties of Cur. The chemical and biological characteristics of Cur/PLA blended nanofibers containing varied amounts of Cur were examined. An increase from 0.125 to 6.250 wt% Cur in PLA caused a decrease in the diameters of the nanofibers from 971 ± 274 to 562 ± 177 nm. At Cur concentrations of <1.250 wt%, PLA and Cur showed good miscibility in the blended nanofibers, as shown by FTIR analysis and tensile tests. The inclusion of Cur in the blended nanofibers at concentration as low as 0.125 wt% promotes the attachment and proliferation of cells. The in vivo wound healing capability of Cur-loaded PLA nanofibers was assessed in a mouse model; treatment with Cur-loaded PLA nanofibers significantly increased the rate of wound closure (87 %) by day 7 compared with that of PLA nanofibers (58 %). The results of this study suggest that Cur-loaded nanofibers with appropriate Cur concentration are nontoxic and have potential as component of wound-healing patches.

Keywords

Curcumin Wound Closure DMAc Nanofiber Scaffold Solution Feed Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This project was partially financially supported by the “2011 Overseas Benchmarking Program of Hankyong National University”.

References

  1. 1.
    Bhardwaj N, Kundu SC (2010) Biotechnol Adv 28:325CrossRefGoogle Scholar
  2. 2.
    Wang HS, Fu GD, Li XS (2009) Recent Pat Nanotechnol 3:21CrossRefGoogle Scholar
  3. 3.
    Sill TJ, von Recum HA (2008) Biomaterials 29:1989CrossRefGoogle Scholar
  4. 4.
    Liang D, Hsiao BS, Chu B (2007) Adv Drug Deliv Rev 59:1392CrossRefGoogle Scholar
  5. 5.
    Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P (2010) Polym Adv Technol 21:77Google Scholar
  6. 6.
    Chong EJ, Phan Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Acta Biomater 3:321CrossRefGoogle Scholar
  7. 7.
    Powell HM, Supp DM, Boyce ST (2008) Biomaterials 29:834CrossRefGoogle Scholar
  8. 8.
    Choi JS, Leong KW, Yoo HS (2008) Biomaterials 29:587CrossRefGoogle Scholar
  9. 9.
    Khil MS, Cha DI, Kim HI, Kim IS, Bhattarai N (2003) J Biomed Mater Res B 67B:675CrossRefGoogle Scholar
  10. 10.
    Liu SJ, Kau YC, Chou CY, Chen JK, Wu RC, Yeh WL (2010) J Membr Sci 355:53CrossRefGoogle Scholar
  11. 11.
    Chen ZG, Wang PW, Wei B, Mo XM, Cui FZ (2010) Acta Biomater 6:372CrossRefGoogle Scholar
  12. 12.
    Liu X, Lin T, Fang Z, Yao G, Wang XG (2008) Adv Sci Technol 57:125CrossRefGoogle Scholar
  13. 13.
    Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C (2009) Acta Biomater 5:2570CrossRefGoogle Scholar
  14. 14.
    Bölgen N, Vargel I, Korkusuz P, Menceloğlu YZ, Pişkin E (2007) J Biomed Mater Res B 81B:530CrossRefGoogle Scholar
  15. 15.
    Chen Y, Lin J, Fei Y, Wang H, Gao W (2010) Fiber Polym 11:1128CrossRefGoogle Scholar
  16. 16.
    Kössler S, Nofziger C, Jakab M, Dossena S, Paulmichl M (2012) Toxicology 292:123CrossRefGoogle Scholar
  17. 17.
    Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Life Sci 78:2081CrossRefGoogle Scholar
  18. 18.
    Srivastava RM, Singh S, Dubey SK, Misra K, Khar A (2011) Int Immunopharmacol 11:331CrossRefGoogle Scholar
  19. 19.
    Notoya M, Nishimura H, Woo JT, Nagai K, Ishihara Y, Hagiwara H (2006) Eur J Pharmacol 534:55CrossRefGoogle Scholar
  20. 20.
    Panchatcharam M, Miriyala S, Gayathri V, Suguna L (2006) Mol Cell Biochem 290:87CrossRefGoogle Scholar
  21. 21.
    Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, Maheshwari RK (1998) Wound Repair Regen 6:167CrossRefGoogle Scholar
  22. 22.
    Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z (2011) Nanoscale 3:1558CrossRefGoogle Scholar
  23. 23.
    Wang X, Jiang Y, Wang YW, Huang MT, Ho CT, Huang Q (2008) Food Chem 108:419CrossRefGoogle Scholar
  24. 24.
    Kumar V, Lewis SA, Mutalik S, Shenoy DB, Venkatesh, Udupa N (2002) Indian J Physiol Pharmacol 46:209Google Scholar
  25. 25.
    Gopinath D, Ahmed MR, Gomathi K, Chitra K, Sehgal PK, Jayakumar R (2004) Biomaterials 25:1911CrossRefGoogle Scholar
  26. 26.
    Ratanajiajaroen P, Watthanaphanit A, Tamura H, Tokura S, Rujiravanit R (2012) Eur Polym J 48:512CrossRefGoogle Scholar
  27. 27.
    Merrell JG, McLaughlin SW, Tie L, Laurencin CT, Chen AF, Nair LS (2009) Clin Exp Pharmacol Physiol 36:1149CrossRefGoogle Scholar
  28. 28.
    Suwantong O, Ruktanonchai U, Supaphol P (2010) J Biomed Mater Res A 94A:1216Google Scholar
  29. 29.
    Foldberg S, Petersen M, Fojan P, Gurevich L, Fink T, Pennisi CP, Zachar V (2012) Colloid Surf B 93:92CrossRefGoogle Scholar
  30. 30.
    Evans RGD, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG, Patrick CW Jr (2002) Biomaterials 23:841CrossRefGoogle Scholar
  31. 31.
    Gu SY, Ren J (2005) Macromol Mater Eng 290:1097CrossRefGoogle Scholar
  32. 32.
    Ribeiro C, Sencadas V, Costa CM, Ribelles JL, Lanceros-Mendez S (2011) Sci Technol Adv Mater 12:015001CrossRefGoogle Scholar
  33. 33.
    Rahman NA, Gizdavic-Nikolaidis M, Ray S, Easteal AJ, Travas-Sejdic J (2010) Synth Met 160:2015CrossRefGoogle Scholar
  34. 34.
    Gizdavic-Nikolaidis M, Ray S, Bennett J, Swift S, Bowmaker G, Easteal A (2011) J Polym Sci Polym Chem 49:4902CrossRefGoogle Scholar
  35. 35.
    Andrady AL (2008) Science and technology of polymer nanofibers. Wiley, New JerseyCrossRefGoogle Scholar
  36. 36.
    Nguyen TTT, Ghosh C, Hwang SG, Chanunpanich N, Park JS (2012) Int J Pharm 439:296CrossRefGoogle Scholar
  37. 37.
    Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, Min DS, Chang JS, Jeong YJ, Lee YH, Park JW, Kwon TK (2003) Carcinogenesis 24:1199CrossRefGoogle Scholar
  38. 38.
    Scharstuhl A, Mutsaers HAM, Pennings SWC, Szarek WA, Russel FGM, Wagener FDA (2009) J Cell Mol Med 13:712CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Thuy Thi Thu Nguyen
    • 1
  • Chiranjit Ghosh
    • 2
  • Seong-Gu Hwang
    • 2
  • Lam Dai Tran
    • 3
  • Jun Seo Park
    • 1
  1. 1.Division of Chemical EngineeringHankyong National UniversityAnseong-siKorea
  2. 2.Department of Animal Life and Environmental ScienceHankyong National UniversityAnseong-siKorea
  3. 3.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations