Journal of Materials Science

, Volume 48, Issue 19, pp 6811–6817 | Cite as

Study on the compatibility and crystalline morphology of NBR/PEO binary blends

  • Shuyan Yang
  • Zhimeng Liu
  • Yuanqi Jiao
  • Yuping Liu
  • Weixin Luo


Compatibility property, as well as crystalline morphology, of NBR/PEO blends has been investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and polarized optical microscopy (POM) thoroughly. There is no apparent shift of nitrile or ether groups in the FTIR spectra of NBR/PEO blends. Based on the calculations from glass transition temperature, the maximum volume fraction of PEO dissolved in NBR phase is about 6.41 % in blend with 5 wt% PEO content (PEO-5), indicating a weak intermolecular interaction in the NBR/PEO blends. From the characteristic absorption bands in the FTIR spectra, XRD and POM graphs, the crystallinity ratio of NBR/PEO blends decreases as the NBR content increases, which is further proved by DSC measurement that the crystallinity ratio and crystal melting temperature of pure PEO are 82.6 %, 69.9 °C, and that of PEO-5 are 16.9 %, 59.5 °C. This illuminates that the weak intermolecular interaction will affect the crystallinity ratio and crystal melting temperature of the NBR/PEO blends.


Differential Scanning Calorimetry Differential Scanning Calorimetry Measurement Dissipative Particle Dynamic Polarize Optical Microscopy Methyl Ethyl Ketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support from Science Foundation for Universities and Institutions of Dongguan City, People's Republic of China (Grant No. 2012108102008), and the Research Fund for the Doctoral Program of Dongguan University of Technology, People's Republic of China (Grant No. ZJ121002).


  1. 1.
    Lee L, Park S-J, Kim S (2013) Solid State Ion 234:19CrossRefGoogle Scholar
  2. 2.
    Lin K-J, Li K, Maranas JK (2013) RSC Adv 3:1564CrossRefGoogle Scholar
  3. 3.
    Huang YP, Lee MJ, Yang MK, Chen CW (2010) Appl Clay Sci 49:163CrossRefGoogle Scholar
  4. 4.
    Lin H, Freeman BD (2004) J Membr Sci 239:105CrossRefGoogle Scholar
  5. 5.
    Al-Nasassrah MA, Podczeck F, Newton JM (1998) Eur J Pharm Biopharm 46:31CrossRefGoogle Scholar
  6. 6.
    Nam J, Choi W, Lee J, Kwon N, Kang H-J, Kim S (2012) Macromolecular Research 1–8Google Scholar
  7. 7.
    Jeddi K, Qazvini NT, Jafari SH, Khonakdar HA (2010) J Polym Sci Polym Phys 48:2065CrossRefGoogle Scholar
  8. 8.
    Na Y-H, He Y, Asakawa N, Yoshie N, Inoue Y (2002) Macromolecules 35:727CrossRefGoogle Scholar
  9. 9.
    Luo Z, Jiang J (2010) Polymer 51:291CrossRefGoogle Scholar
  10. 10.
    Yang H, Ze-Sheng L, Qian H-j, Yang Y-b, Zhang X-b, Sun C-c (2004) Polymer 45:453CrossRefGoogle Scholar
  11. 11.
    Yen KC, Woo EM (2009) Polym Bull 62:225CrossRefGoogle Scholar
  12. 12.
    Wu L, Lisowski M, Talibuddin S, Runt J (1999) Macromolecules 32:1576CrossRefGoogle Scholar
  13. 13.
    Marentette JM, Brown GR (1998) Polymer 39:1415CrossRefGoogle Scholar
  14. 14.
    Ramesh S, Yahaya AH, Arof AK (2002) Solid State Ion 148(3–4):483CrossRefGoogle Scholar
  15. 15.
    Etxeberria A, Elorza JM, Iruin JJ, Marco C, Gómez MA, Fatou JG (1993) Eur Polym J 29:1483CrossRefGoogle Scholar
  16. 16.
    Marco C, Gömez MA, Fatou JG, Etxeberria A, Elorza MM, Iruin JJ (1993) Eur Polym J 29:1477CrossRefGoogle Scholar
  17. 17.
    Ghiou N, Benaniba MT (2010) Int J Polym Mater 59:463CrossRefGoogle Scholar
  18. 18.
    Agarwal K, Prasad M, Chakraborty A, Vishwakarma CB, Sharma RB, Setua DK (2011) J Therm Anal Calorim 104:1125CrossRefGoogle Scholar
  19. 19.
    Yang SY, Liu L, Jia ZX, Jia DM, Luo YF (2011) Polymer 52:2701CrossRefGoogle Scholar
  20. 20.
    Sarge SM, Hemminger W, Gmelin E, Höhne GWH, Cammenga HK, Eysel W (1997) J Therm Anal Calorim 49:1125CrossRefGoogle Scholar
  21. 21.
    Noor SAM, Ahmad A, Talib IA, Rahman MYA (2011) Ionics 17:451CrossRefGoogle Scholar
  22. 22.
    Noor SAM, Ahmad A, Talib IA, Rahman MYA (2010) Ionics 16:161CrossRefGoogle Scholar
  23. 23.
    Hoffmann CL, Rabolt JF (1996) Macromolecules 29:2543CrossRefGoogle Scholar
  24. 24.
    Miwa Y, Drews AR, Schlick S (2008) Macromolecules 41:4701CrossRefGoogle Scholar
  25. 25.
    Rocco AM, da Fonseca CP, Pereira RP (2002) Polymer 43:3601CrossRefGoogle Scholar
  26. 26.
    Tang Z, Wang J, Chen Q, He W, Shen C, Mao X-X (2007) Electrochim Acta 52:6638CrossRefGoogle Scholar
  27. 27.
    Derakhshandeh B, Shojaei A, Faghihi M (2008) J Appl Polym Sci 108:3808CrossRefGoogle Scholar
  28. 28.
    Pan C-Y, Feng Q, Wang L-j, Zhang Q, Chao M (2007) J Cent South Univ Technol 14:348CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shuyan Yang
    • 1
    • 2
  • Zhimeng Liu
    • 1
    • 2
  • Yuanqi Jiao
    • 1
    • 2
  • Yuping Liu
    • 1
    • 2
  • Weixin Luo
    • 1
    • 3
  1. 1.Chemical Industrial Cleaner Production and Green Chemical R&D Center of Guang Dong Universities, Dongguan University of TechnologyDongguanPeople’s Republic of China
  2. 2.Dongguan Cleaner Production CenterDongguanPeople’s Republic of China
  3. 3.School of Materials Science and Engineering, South China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations