Journal of Materials Science

, Volume 48, Issue 19, pp 6753–6761 | Cite as

Effect of high energy ball milling on the structure and mechanical properties of cross-linked high density polyethylene

  • E. Roumeli
  • K. M. Paraskevopoulos
  • D. Bikiaris
  • K. Chrissafis


The effects of high energy ball milling (HEBM) on the structure and some key-properties of crosslinked high density polyethylene (PEX) have been thoroughly examined with a combination of X-ray diffraction analysis, IR and Raman spectroscopy, differential scanning calorimetry, gel content measurements, and tensile properties tests. A structure–property relationship, which provides a reasonable explanation for the studied case has been developed based on the experimental results and their analysis. It is proposed that the HEBM provides some of the silane-grafted macromolecular chains, which have a specific orientation, with sufficient energy in order to crosslink and form small crystalline-like areas. The arrangement of chains in the “reformed” domains leads to a total increase of the overall crystallinity, but also a decrease of the crystalline size. The proposed model can also support the fact that by increasing the milling time, the overall crystallinity of PEX and some important mechanical properties are found to increase.


High Density Polyethylene HDPE LDPE Siloxane Bond High Energy Ball Milling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Prof. Aldo Boccaccini of the University of Erlangen-Nurnberg for allowing the use of the Raman spectroscopy facilities available at Biometerials Department, and Mr. C. Dolle for performing these measurements. This study was financially supported by the Greek General Secretariat of Research and Development (09SYN-33-484).


  1. 1.
    Gorrasi G, Di Lieto R, Patimo G, De Pasquale S, Sorrentino A (2011) Polymer 52:1124. doi: 10.1016/j.polymer.2011.01.008 CrossRefGoogle Scholar
  2. 2.
    Terife G, Narh KA (2011) Polym Compos 32:2101CrossRefGoogle Scholar
  3. 3.
    Sorrentino A, Gorrasi G, Tortora M et al (2005) Polymer 46:1601. doi: 10.1016/j.polymer.2004.12.018 CrossRefGoogle Scholar
  4. 4.
    Gorrasi G, Sarno M, Di Bartolomeo A, Sannino D, Ciambelli P, Vittoria V (2007) J Polym Sci B 45:597. doi: 10.1002/polb.21070 CrossRefGoogle Scholar
  5. 5.
    Suryanarayana C (2001) Prog Mater Sci 46:1. doi: 10.1016/S0079-6425(99)00010-9 CrossRefGoogle Scholar
  6. 6.
    Jiang X, Drzal LT (2012) J Appl Polym Sci 124:525CrossRefGoogle Scholar
  7. 7.
    Olmos D, Domínguez C, Castrillo PD, Gonzalez-Benito J (2009) Polymer 50:1732. doi: 10.1016/j.polymer.2009.02.011 CrossRefGoogle Scholar
  8. 8.
    Ishida T (1994) J Mater Sci Lett 13:623. doi: 10.1007/bf00271215 CrossRefGoogle Scholar
  9. 9.
    Castricum HL, Yang H, Bakker H, Van Deursen JH (1997) In: Fiorani D, Magini M (eds) Synthesis and properties of mechanically alloyed and nanocrystalline materials, pts 1 and 2 Ismanam-96. Trans Tech Publications Ltd, Stafa-ZurichGoogle Scholar
  10. 10.
    Wu H, Liang M, Lu C (2012) Thermochim Acta 545:148. doi: 10.1016/j.tca.2012.07.008 CrossRefGoogle Scholar
  11. 11.
    Oliveira GL, Costa MF (2010) Mater Sci Eng A 527:4593. doi: 10.1016/j.msea.2010.03.102 CrossRefGoogle Scholar
  12. 12.
    Wang Z, Hu Y, Gui Z, Zong R (2003) Polym Test 22:533. doi: 10.1016/s0142-9418(02)00149-6 CrossRefGoogle Scholar
  13. 13.
    Ritums JE, Mattozzi A, Gedde UW, Hedenqvist MS, Bergman G, Palmlöf M (2006) J Polym Sci B 44:641. doi: 10.1002/polb.20729 Google Scholar
  14. 14.
    Celina M, George GA (1995) Polym Degrad Stab 48:297. doi: 10.1016/0141-3910(95)00053-O CrossRefGoogle Scholar
  15. 15.
    Venkatraman S, Kleiner L (1989) Adv Polym Technol 9:265. doi: 10.1002/adv.1989.060090308 CrossRefGoogle Scholar
  16. 16.
    Kuan H-C, Kuan J-F, Ma C-CM, Huang J-M (2005) J Appl Polym Sci 96:2383. doi: 10.1002/app.21694 CrossRefGoogle Scholar
  17. 17.
    Gan Q, Qi R, Zhang J, Yu J, Huang S (2011) J Appl Polym Sci 119:2539. doi: 10.1002/app.31639 CrossRefGoogle Scholar
  18. 18.
    Atkinson JR, Cicek RZ (1983) Biomaterials 4:267. doi: 10.1016/0142-9612(83)90026-1 CrossRefGoogle Scholar
  19. 19.
    Narkis M, Raiter I, Shkolnik S, Siegmannz A, Eyerer P (1987) J Macromol Sci B 26:37. doi: 10.1080/00222348708248057 CrossRefGoogle Scholar
  20. 20.
    Andreopoulos AG, Kampouris EM (1986) J Appl Polym Sci 31:1061. doi: 10.1002/app.1986.070310407 CrossRefGoogle Scholar
  21. 21.
    Azizi H, Morshedian J, Barikani M, Wagner MH (2011) Adv Polym Technol 30:286. doi: 10.1002/adv.20224 CrossRefGoogle Scholar
  22. 22.
    Narkis M, Tzur A, Vaxman A, Fritz HG (1985) Polym Eng Sci 25:857. doi: 10.1002/pen.760251311 CrossRefGoogle Scholar
  23. 23.
    Barzin J, Azizi H, Morshedian J (2006) Polym Plast Technol Eng 45:979. doi: 10.1080/03602550600718209 CrossRefGoogle Scholar
  24. 24.
    Barzin J, Azizi H, Morshedian J (2007) Polym Plast Technol Eng 46:305. doi: 10.1080/03602550601155815 CrossRefGoogle Scholar
  25. 25.
    Azizi H, Morshedian J, Barikani M (2009) J Vinyl Add Tech 15:184. doi: 10.1002/vnl.20194 CrossRefGoogle Scholar
  26. 26.
    Bengtsson M, Gatenholm P, Oksman K (2005) Compos Sci Technol 65:1468. doi: 10.1016/j.compscitech.2004.12.050 CrossRefGoogle Scholar
  27. 27.
    Bullen DJ, Capaccio G, Frye CJ, Brock T (1989) Br Polym J 21:117. doi: 10.1002/pi.4980210205 CrossRefGoogle Scholar
  28. 28.
    Rizzo P, Baione F, Guerra G, Martinotto L, Albizzati E (2001) Macromolecules 34:5175. doi: 10.1021/ma010121z CrossRefGoogle Scholar
  29. 29.
    Bunn CW (1939) Trans Faraday Soc 35:482CrossRefGoogle Scholar
  30. 30.
    Langford JI, Wilson AJC (1978) J Appl Crystallogr 11:102. doi: 10.1107/S0021889878012844 CrossRefGoogle Scholar
  31. 31.
    Clements J, Jakeways R, Ward IM (1978) Polymer 19:639. doi: 10.1016/0032-3861(78)90116-7 CrossRefGoogle Scholar
  32. 32.
    Akovali G, Atalay A (1997) Polym Test 16:165. doi: 10.1016/S0142-9418(96)00037-2 CrossRefGoogle Scholar
  33. 33.
    Boerio FJ, Koenig JL (1970) J Chem Phys 52:3425CrossRefGoogle Scholar
  34. 34.
    Strobl GR, Hagedorn W (1978) J Polym Sci 16:1181. doi: 10.1002/pol.1978.180160704 Google Scholar
  35. 35.
    Koglin E, Meier RJ (1999) Comput Theor Polym Sci 9:327. doi: 10.1016/S1089-3156(99)00022-7 CrossRefGoogle Scholar
  36. 36.
    Kurelec L, Rastogi S, Meier RJ, Lemstra PJ (2000) Macromolecules 33:5593. doi: 10.1021/ma9911187 CrossRefGoogle Scholar
  37. 37.
    Masetti G, Abbate S, Gussoni M, Zerbi G (1980) J Chem Phys 73:4671CrossRefGoogle Scholar
  38. 38.
    Abbate S, Gussoni M, Zerbi G (1980) J Chem Phys 73:4680CrossRefGoogle Scholar
  39. 39.
    Hagemann H, Snyder RG, Peacock AJ, Mandelkern L (1989) Macromolecules 22:3600. doi: 10.1021/ma00199a017 CrossRefGoogle Scholar
  40. 40.
    Painter PC, Runt J, Coleman MM, Harrison IR (1977) J Polym Sci 15:1647. doi: 10.1002/pol.1977.180150912 Google Scholar
  41. 41.
    Mutter R, Stille W, Strobl G (1993) J Polym Sci B 31:99. doi: 10.1002/polb.1993.090310113 CrossRefGoogle Scholar
  42. 42.
    Taddei P, Affatato S, Fagnano C, Bordini B, Tinti A, Toni A (2002) J Mol Struct 613:121. doi: 10.1016/S0022-2860(02)00141-2 CrossRefGoogle Scholar
  43. 43.
    Naylor CC, Meier RJ, Kip BJ et al (1995) Macromolecules 28:2969. doi: 10.1021/ma00112a050 CrossRefGoogle Scholar
  44. 44.
    Glotin M, Mandelkern L (1982) Colloid Polym Sci 260:182. doi: 10.1007/bf01465438 CrossRefGoogle Scholar
  45. 45.
    Svoboda R, Málek J (2013) J Therm Anal Calorim 111:1045. doi: 10.1007/s10973-012-2445-9 CrossRefGoogle Scholar
  46. 46.
    Fraser RDB, Suzuki E (1966) Anal Chem 38:1770. doi: 10.1021/ac60244a038 CrossRefGoogle Scholar
  47. 47.
    Fraser RDB, Suzuki E (1969) Anal Chem 41:37. doi: 10.1021/ac60270a007 CrossRefGoogle Scholar
  48. 48.
    Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA (2011) J Phys Chem B 115:1780. doi: 10.1021/jp110895z CrossRefGoogle Scholar
  49. 49.
    Koch CC, Cavin OB, McKamey CG, Scarbrough JO (1983) Appl Phys Lett 43:1017CrossRefGoogle Scholar
  50. 50.
    Schwarz RB, Johnson WL (1983) Phys Rev Lett 51:415CrossRefGoogle Scholar
  51. 51.
    Fan GJ, Guo FQ, Hu ZQ, Quan MX, Lu K (1997) Phys Rev B 55:11010CrossRefGoogle Scholar
  52. 52.
    Smith AP, Spontak RJ, Ade H, Smith SD, Koch CC (1999) Adv Mater 11:1277. doi: 10.1002/(sici)1521-4095(199910)11:15<1277:aid-adma1277>;2-9 CrossRefGoogle Scholar
  53. 53.
    Bai C, Spontak RJ, Koch CC, Saw CK, Balik CM (2000) Polymer 41:7147. doi: 10.1016/S0032-3861(00)00048-3 CrossRefGoogle Scholar
  54. 54.
    Smith AP, Shay JS, Spontak RJ et al (2000) Polymer 41:6271. doi: 10.1016/S0032-3861(99)00830-7 CrossRefGoogle Scholar
  55. 55.
    Cavalieri F, Padella F, Bourbonneux S (2002) Polymer 43:1155. doi: 10.1016/S0032-3861(01)00721-2 CrossRefGoogle Scholar
  56. 56.
    Pan J, Shaw WJD (1994) J Appl Polym Sci 52:507. doi: 10.1002/app.1994.070520405 CrossRefGoogle Scholar
  57. 57.
    Smith AP, Bai C, Ade H, Spontak RJ, Balik CM, Koch CC (1998) Macromol Rapid Commun 19:557. doi: 10.1002/(sici)1521-3927(19981101)19:11<557:aid-marc557>;2-x CrossRefGoogle Scholar
  58. 58.
    Beyer MK, Clausen-Schaumann H (2005) Chem Rev 105:2921. doi: 10.1021/cr030697h CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • E. Roumeli
    • 1
  • K. M. Paraskevopoulos
    • 1
  • D. Bikiaris
    • 2
  • K. Chrissafis
    • 1
  1. 1.Solid State Physics Section, Physics DepartmentAristotle University of ThessalonikiThessaloníkiGreece
  2. 2.Laboratory of Polymer Chemistry and Technology, Department of ChemistryAristotle University of ThessalonikiThessaloníkiGreece

Personalised recommendations