Journal of Materials Science

, Volume 48, Issue 19, pp 6728–6736 | Cite as

Decoration of Cu nanowires with chemically modified TiO2 nanoparticles for their improved photocatalytic performance

  • Yuxin Zhang
  • Ming Huang
  • Fei Li
  • Han Zhao
  • Zhongquan Wen


In this work, TiO2 nanoparticles/Cu nanowires (TiO2NPs@CuNWs) binary composites with tunable coverage of TiO2 nanoparticles were prepared by a facile method of mixing oleic acid-modified TiO2 nanoparticles with as-prepared Cu nanowires. Characterization studies including X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were applied to investigate the structure and morphology of the as-synthesized TiO2NPs@CuNWs binary composites. The photocatalytic activity of TiO2NPs@CuNWs binary composites was examined by photodegradation of methyl orange. The enhanced photocatalytic efficiency of TiO2NPs@CuNWs nanocomposites was ascribed to the moderate specific surface area, mesoporous structures, and the electron sink effect of the Cu nanowires. In principle, our investigation indicates that the TiO2@Cu self-assembled nanostructures can be a promising candidate of composite photocatalysts.


TiO2 Photocatalytic Activity Methyl Orange TiO2 Nanoparticles Binary Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant no. 51104194), Doctoral Fund of Ministry of Education of China (20110191120014), No. 43 Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and Fundamental Research Funds for the Central Universities (Project no. CDJZR12248801 and CDJZR12135501, Chongqing University, PR China). Dr. Zhang would also like to thank Chongqing University for providing the Talent of High Level Scientific Research Fund.

Supplementary material

10853_2013_7474_MOESM1_ESM.doc (3.5 mb)
Supplementary material 1 (DOC 3578 kb)


  1. 1.
    Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Nature 453:638CrossRefGoogle Scholar
  2. 2.
    Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Nature 395:583CrossRefGoogle Scholar
  3. 3.
    Zeng X, Gan YX, Clark E, Su L (2011) J Alloys Compd 509:L221CrossRefGoogle Scholar
  4. 4.
    Lin H, Li L, Zhao M, Huang X, Chen X, Li G, Yu R (2012) J Am Chem Soc 134:8328CrossRefGoogle Scholar
  5. 5.
    Wang Z, Lou XW (2012) Adv Mater 24:4124CrossRefGoogle Scholar
  6. 6.
    Ren Y, Liu Z, Pourpoint F, Armstrong AR, Grey CP, Bruce PG (2012) Angew Chem Int Edit 51:2164CrossRefGoogle Scholar
  7. 7.
    Hwang YJ, Hahn C, Liu B, Yang P (2012) ACS Nano 6:5060CrossRefGoogle Scholar
  8. 8.
    Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng X (2011) Nano Lett 11:4978CrossRefGoogle Scholar
  9. 9.
    Yang X, Fu H, Yu A, Jiang X (2012) J Colloid Interface Sci 387:74CrossRefGoogle Scholar
  10. 10.
    Gil MC, Van Driessche I, Van Gils S, Lommens P, Castelein P, De Buysser K (2012) J Alloys Compd 540:170CrossRefGoogle Scholar
  11. 11.
    Lai CW, Sreekantan S (2013) J Alloys Compd 547:43CrossRefGoogle Scholar
  12. 12.
    Zhang YX, Gao B, Puma GL, Ray AK, Zeng HC (2010) Sci Adv Mater 2:505Google Scholar
  13. 13.
    Gao B, Chen GZ, Puma GL (2009) Appl Catal B-Environ 89:503CrossRefGoogle Scholar
  14. 14.
    Wang J, Zhang T, Wang D, Pan R, Wang Q, Xia H (2013) J Alloys Compd 551:82CrossRefGoogle Scholar
  15. 15.
    Sadoughi G, Mohammadpour R, Irajizad A, Taghavinia N, Dadgostar S, Samadpour M, Tajabadi F (2013) Curr Appl Phys 13:371CrossRefGoogle Scholar
  16. 16.
    Cheng C, Sun Y (2012) Appl Surf Sci 263:273CrossRefGoogle Scholar
  17. 17.
    Liu C, Sun H, Yang S (2010) Chem-Eur J. 16:4381CrossRefGoogle Scholar
  18. 18.
    Liu Z, Su X, Hou G, Bi S, Xiao Z, Jia H (2013) J Alloys Compd 555:68CrossRefGoogle Scholar
  19. 19.
    Minero C, Vione D (2006) Appl Catal B-Environ 67:257CrossRefGoogle Scholar
  20. 20.
    Wang S, Gong Q, Zhu Y, Liang J (2009) Appl Surf Sci 255:8063CrossRefGoogle Scholar
  21. 21.
    Gao B, Peng C, Chen GZ, Puma GL (2008) Appl Catal B-Environ 85:17CrossRefGoogle Scholar
  22. 22.
    Sarkar A, Shchukarev A, Leino A-R, Kordas K, Mikkola J-P, Petrov PO, Tuchina ES, Popov AP, Darvin ME, Meinke MC, Lademann J, Tuchin VV (2012) Nanotechnology 23:1CrossRefGoogle Scholar
  23. 23.
    Meng X, Qi L, Xiao Z, Gong S, Wei Q, Liu Y, Yang M, Wang F (2012) J Nanopart Res 14:1CrossRefGoogle Scholar
  24. 24.
    Ramakrishnan G, Zhao S, Han W, Orlov A (2011) Chem Eng J 170:445CrossRefGoogle Scholar
  25. 25.
    Hachiya A, Takata S, Komuro Y, Matsumoto Y (2012) J Phys Chem C 116:16951CrossRefGoogle Scholar
  26. 26.
    Cao Y, Zhao Z, Yi J, Ma C, Zhou D, Wang R, Li C, Qiu J (2013) J Alloys Compd 554:12CrossRefGoogle Scholar
  27. 27.
    Luiz DdB, Floriani Andersen SL, Berger C, Jose HJ, Peralta Muniz Moreira RdF (2012) J Photoch Photobio A 246:36CrossRefGoogle Scholar
  28. 28.
    Neville EM, Mattle MJ, Loughrey D, Rajesh B, Rahman M, MacElroy JMD, Sullivan JA, Thampi KR (2012) J Phys Chem C 116:16511CrossRefGoogle Scholar
  29. 29.
    Thind SS, Wu G, Chen A (2012) Appl Catal B-Environ 111:38CrossRefGoogle Scholar
  30. 30.
    Dong F, Guo S, Wang H, Li X, Wu Z (2011) J Phys Chem C 115:13285CrossRefGoogle Scholar
  31. 31.
    Dong F, Wang H, Wu Z, Qiu J (2010) J Colloid Interface Sci 343:200CrossRefGoogle Scholar
  32. 32.
    Rahulan KM, Padmanathan N, Stephen LD, Kanakam CC (2013) J Alloys Compd 554:432CrossRefGoogle Scholar
  33. 33.
    Tan JZY, Fernández Y, Liu D, Maroto-Valer M, Bian J, Zhang X (2012) Chem Phys Lett 531:149CrossRefGoogle Scholar
  34. 34.
    Wang X, Dornom T, Blackford M, Caruso RA (2012) J Mater Chem 22:11701CrossRefGoogle Scholar
  35. 35.
    Zou X–X, Li G-D, Zhao J, Su J, Wei X, Wang K-X, Wang Y-N,Chen J-S (2012) Int J Photoenergy 2012. doi: 10.1155/2012/720183
  36. 36.
    McManamon C, Holmes JD, Morris MA (2011) J Hazard Mater 193:120CrossRefGoogle Scholar
  37. 37.
    Nakano R, Chand R, Obuchi E, Katoh K, Nakano K (2011) Chem Eng J 176:260CrossRefGoogle Scholar
  38. 38.
    Dong F, Sun Y,Fu M (2012) Int J Photoenergy 2012. doi: 10.1155/2012/569716
  39. 39.
    Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) Adv Mater 15:353CrossRefGoogle Scholar
  40. 40.
    Bai B, Quici N, Li Z, Puma GL (2011) Chem Eng J 170:451CrossRefGoogle Scholar
  41. 41.
    Liu B, Zeng HC (2008) Chem Mater 20:2711CrossRefGoogle Scholar
  42. 42.
    Khalid NR, Ahmed E, Hong Z, Zhang Y, Ahmad M (2012) Curr Appl Phys 12:1485CrossRefGoogle Scholar
  43. 43.
    Gao Y, Pu X, Zhang D, Ding G, Shao X, Ma J (2012) Carbon 50:4093CrossRefGoogle Scholar
  44. 44.
    Shah MSAS, Park AR, Zhang K, Park JH, Yoo PJ (2012) Acs Appl Mater Interf 4:3893CrossRefGoogle Scholar
  45. 45.
    Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan Z (2012) Acs Appl Mater Interf 4:3944CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Zhang N, Tang Z-R, Xu Y-J (2012) Phys Chem Chem Phys 14:9167CrossRefGoogle Scholar
  47. 47.
    Shi M, Shen J, Ma H, Li Z, Lu X, Li N, Ye M (2012) Colloid Surface A 405:30CrossRefGoogle Scholar
  48. 48.
    Kim CH, Kim B-H, Yang KS (2012) Carbon 50:2472CrossRefGoogle Scholar
  49. 49.
    Sarkar J, Khan GG, Basumallick A (2007) Bull Mater Sci 30:271CrossRefGoogle Scholar
  50. 50.
    Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, Korvink JG, Schubert US (2010) J Mater Chem 20:8446CrossRefGoogle Scholar
  51. 51.
    Vukojevic S, Trapp O, Grunwaldt JD, Kiener C, Schuth F (2005) Angew Chem Int Edit 44:7978CrossRefGoogle Scholar
  52. 52.
    Gokhale AA, Dumesic JA, Mavrikakis M (2008) J Am Chem Soc 130:1402CrossRefGoogle Scholar
  53. 53.
    Ressler T, Kniep BL, Kasatkin I, Schlogl R (2005) Angew Chem Int Edit 44:4704CrossRefGoogle Scholar
  54. 54.
    Shi Y, Li H, Chen LQ, Huang XJ (2005) Sci Technol Ad Mat 6:761CrossRefGoogle Scholar
  55. 55.
    Chang Y, Lye ML, Zeng HC (2005) Langmuir 21:3746CrossRefGoogle Scholar
  56. 56.
    Ye E, Zhang S-Y, Liu S, Han M-Y (2011) Chem Eur J 17:3074CrossRefGoogle Scholar
  57. 57.
    Zhang X, Zhang D, Ni X, Zheng H (2006) Solid State Commun 139:412CrossRefGoogle Scholar
  58. 58.
    Wang W, Li G, Zhang Z (2007) J Cryst Growth 299:158CrossRefGoogle Scholar
  59. 59.
    Xu S, Sun X, Ye H, You T, Song X, Sun S (2010) Mater Chem Phys 120:1CrossRefGoogle Scholar
  60. 60.
    Mohl M, Pusztai P, Kukovecz A, Konya Z, Kukkola J, Kordas K, Vajtai R, Ajayan PM (2010) Langmuir 26:16496CrossRefGoogle Scholar
  61. 61.
    Jin M, He G, Zhang H, Zeng J, Xie Z, Xia Y (2011) Angew Chem Int Edit 50:10560CrossRefGoogle Scholar
  62. 62.
    Fang D, Huang K, Liu S, Qin D (2009) Electrochem Commun 11:901CrossRefGoogle Scholar
  63. 63.
    Rathmell AR, Bergin SM, Hua Y-L, Li Z-Y, Wiley BJ (2010) Adv Mater 22:3558CrossRefGoogle Scholar
  64. 64.
    Cozzoli PD, Kornowski A, Weller H (2003) J Am Chem Soc 125:14539CrossRefGoogle Scholar
  65. 65.
    Liu J, Wang W, Yu H, Wu Z, Peng J, Cao Y (2008) Sol Energ Mat Sol C 92:1403CrossRefGoogle Scholar
  66. 66.
    Caputo G, Cingolani R, Cozzoli PD, Athanassiou A (2009) Phys Chem Chem Phys 11:3692CrossRefGoogle Scholar
  67. 67.
    Bach LG, Islam MR, Seo SY, Lim KT (2013) J Appl Polym Sci 127:261CrossRefGoogle Scholar
  68. 68.
    Park JT, Koh JH, Koh JK, Kim JH (2009) Appl Surf Sci 255:3739CrossRefGoogle Scholar
  69. 69.
    Chatterjee S, Bhattacharyya K, Ayyub P, Tyagi AK (2010) J Phys Chem C 114:9424CrossRefGoogle Scholar
  70. 70.
    Patel SKS, Gajbhiye NS (2012) Mater Chem Phys 132:175CrossRefGoogle Scholar
  71. 71.
    Mrabet D, Zahedi-Niaki MH, Do T-O (2008) J Phys Chem C 112:7124CrossRefGoogle Scholar
  72. 72.
    Yu H, Xu G, Shen X, Yan X, Huang R, Li F (2009) J Alloys Compd 484:395CrossRefGoogle Scholar
  73. 73.
    Lee Y-J, Jun K-W, Park J-Y, Potdar HS, Chikate RC (2008) J Ind Eng Chem 14:38CrossRefGoogle Scholar
  74. 74.
    Love CJ, Smith JD, Cui Y, Varanasi KK (2011) Nanoscale 3:4972CrossRefGoogle Scholar
  75. 75.
    Tao X, Sun L, Zhao Y (2011) Mater Chem Phys 125:219CrossRefGoogle Scholar
  76. 76.
    Pinto RJB, Neves MC, Neto CP, Trindade T (2012) Eur J Inorg Chem 2012:5043CrossRefGoogle Scholar
  77. 77.
    Zuo X, Peng C, Huang Q, Song S, Wang L, Li D, Fan C (2009) Nano Res 2:617CrossRefGoogle Scholar
  78. 78.
    Zhang N, Liu S, Fu X, Xu Y-J (2011) J Phys Chem C 115:9136CrossRefGoogle Scholar
  79. 79.
    Pan Y, Deng S, Polavarapu L, Gao N, Yuan P, Sow CH, Xu Q-H (2012) Langmuir 28:12304CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yuxin Zhang
    • 1
    • 2
  • Ming Huang
    • 1
  • Fei Li
    • 1
  • Han Zhao
    • 3
  • Zhongquan Wen
    • 2
  1. 1.College of Material Science and EngineeringChongqing UniversityChongqingPeople’s Republic of China
  2. 2.Key Laboratory of Fundamental Science of Micro/Nano-Devices and System TechnologyChongqing UniversityChongqingChina
  3. 3.School of Material Science and EngineeringNanyang Technology University (NTU)SingaporeSingapore

Personalised recommendations