Advertisement

Journal of Materials Science

, Volume 48, Issue 19, pp 6700–6706 | Cite as

Influence of oxygen ingress on fine scale precipitation of α-Ti during oxidation of Beta21S β-Ti alloy

  • A. Behera
  • S. Nag
  • K. Mahdak
  • H. Mohseni
  • J. Tiley
  • R. Banerjee
Article

Abstract

The formation of a surface oxide layer along with α precipitation in the subsurface oxygen-enriched zone, during the oxidation of a β-Ti alloy, has been investigated using scanning electron microscopy, electron probe micro analysis, X-ray diffraction, (Scanning) transmission electron microscopy, 3D-Atom Probe studies, and nano-indentation. Immediately below the nanocrystalline oxide layer, a two-phase mixture consisting of nanoscale equiaxed α grains and rutile grains are formed. With increasing depth, the α morphology below the oxide layer varied from nanoscale equiaxed to lathlike, coupled with substantial changes in size-scale and nucleation density of α precipitates. A distinct change in the lattice parameters of α and β phases below the oxide layer and the overall micro hardness of the material is also noted. The role of oxygen ingress on the scale and morphology of α precipitation has been discussed.

Keywords

Rutile Oxide Layer Electron Probe Micro Analysis Nucleation Density Bulk Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boyer R, Welsch G, Collings EW (eds) (1994) Materials properties handbook: titanium alloys. ASM Intl, Materials ParkGoogle Scholar
  2. 2.
    Advanced Aerospace Alloys (1991) Mater Eng, p 26Google Scholar
  3. 3.
    Boyer R (1996) Mater Sci Eng A213:103Google Scholar
  4. 4.
    Shevel’kov V.V (1992) Translated from Metallovedenie i Termicheskaya Obrabotke Metallov, 8, 33–37Google Scholar
  5. 5.
    Fanning JC (2005) J Mater Eng Perf 14(6):788CrossRefGoogle Scholar
  6. 6.
    Bania PJ, Parris WM (1990) TDA Intl. presentation, OrlandoGoogle Scholar
  7. 7.
    Schutz RW (1994) JOM 46(7):14CrossRefGoogle Scholar
  8. 8.
    Agarwal N, Bhattarcharjee A, Ghosal P, Nandy TK, Sagar PK (2008) Indian Inst Met 61(5):419CrossRefGoogle Scholar
  9. 9.
    Huang X, Cuddy J, Goel N, Richards NL (1994) JMEPEG 3:560CrossRefGoogle Scholar
  10. 10.
    Xu Guangjun, Yang Gaiying, Zhu Jing (1999) Rare Met 18(3):176Google Scholar
  11. 11.
    Wallace TA, Wiedemann KE, Clark RK (1993) Titanium 92, Science and TechnologyGoogle Scholar
  12. 12.
    Chaze AM, Coddet C (1987) J Mater Sci 22:1206. doi: 10.1016/j.msea.2007.11.069 CrossRefGoogle Scholar
  13. 13.
    Malinov S et al (2002) Mat Charact 48:279CrossRefGoogle Scholar
  14. 14.
    Van Thyne RJ, Bumps ES, Kessler HD, Hansen M (1952) Phase diagram of titanium aluminum, titanium-chromium-iron and titanium-oxygen alloy systems, WADC technical report 52-16Google Scholar
  15. 15.
    Li YG, Blenkinsop PA, Loretto MH, Rugg D, Voice W (1999) Acta Mat 47(10):2889CrossRefGoogle Scholar
  16. 16.
    Imam MA, Feng CR (1997) Advances in the science and technology of titanium alloy processing, The Minerals, Metals and Materials SocietyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. Behera
    • 1
  • S. Nag
    • 1
  • K. Mahdak
    • 1
  • H. Mohseni
    • 1
  • J. Tiley
    • 2
  • R. Banerjee
    • 1
  1. 1.Center for Advanced Research and Technology, Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  2. 2.Materials and Manufacturing DirectorateAir Force Research LaboratoryDaytonUSA

Personalised recommendations