Journal of Materials Science

, Volume 48, Issue 19, pp 6700–6706 | Cite as

Influence of oxygen ingress on fine scale precipitation of α-Ti during oxidation of Beta21S β-Ti alloy

  • A. Behera
  • S. Nag
  • K. Mahdak
  • H. Mohseni
  • J. Tiley
  • R. Banerjee


The formation of a surface oxide layer along with α precipitation in the subsurface oxygen-enriched zone, during the oxidation of a β-Ti alloy, has been investigated using scanning electron microscopy, electron probe micro analysis, X-ray diffraction, (Scanning) transmission electron microscopy, 3D-Atom Probe studies, and nano-indentation. Immediately below the nanocrystalline oxide layer, a two-phase mixture consisting of nanoscale equiaxed α grains and rutile grains are formed. With increasing depth, the α morphology below the oxide layer varied from nanoscale equiaxed to lathlike, coupled with substantial changes in size-scale and nucleation density of α precipitates. A distinct change in the lattice parameters of α and β phases below the oxide layer and the overall micro hardness of the material is also noted. The role of oxygen ingress on the scale and morphology of α precipitation has been discussed.


Rutile Oxide Layer Electron Probe Micro Analysis Nucleation Density Bulk Matrix 


  1. 1.
    Boyer R, Welsch G, Collings EW (eds) (1994) Materials properties handbook: titanium alloys. ASM Intl, Materials ParkGoogle Scholar
  2. 2.
    Advanced Aerospace Alloys (1991) Mater Eng, p 26Google Scholar
  3. 3.
    Boyer R (1996) Mater Sci Eng A213:103Google Scholar
  4. 4.
    Shevel’kov V.V (1992) Translated from Metallovedenie i Termicheskaya Obrabotke Metallov, 8, 33–37Google Scholar
  5. 5.
    Fanning JC (2005) J Mater Eng Perf 14(6):788CrossRefGoogle Scholar
  6. 6.
    Bania PJ, Parris WM (1990) TDA Intl. presentation, OrlandoGoogle Scholar
  7. 7.
    Schutz RW (1994) JOM 46(7):14CrossRefGoogle Scholar
  8. 8.
    Agarwal N, Bhattarcharjee A, Ghosal P, Nandy TK, Sagar PK (2008) Indian Inst Met 61(5):419CrossRefGoogle Scholar
  9. 9.
    Huang X, Cuddy J, Goel N, Richards NL (1994) JMEPEG 3:560CrossRefGoogle Scholar
  10. 10.
    Xu Guangjun, Yang Gaiying, Zhu Jing (1999) Rare Met 18(3):176Google Scholar
  11. 11.
    Wallace TA, Wiedemann KE, Clark RK (1993) Titanium 92, Science and TechnologyGoogle Scholar
  12. 12.
    Chaze AM, Coddet C (1987) J Mater Sci 22:1206. doi: 10.1016/j.msea.2007.11.069 CrossRefGoogle Scholar
  13. 13.
    Malinov S et al (2002) Mat Charact 48:279CrossRefGoogle Scholar
  14. 14.
    Van Thyne RJ, Bumps ES, Kessler HD, Hansen M (1952) Phase diagram of titanium aluminum, titanium-chromium-iron and titanium-oxygen alloy systems, WADC technical report 52-16Google Scholar
  15. 15.
    Li YG, Blenkinsop PA, Loretto MH, Rugg D, Voice W (1999) Acta Mat 47(10):2889CrossRefGoogle Scholar
  16. 16.
    Imam MA, Feng CR (1997) Advances in the science and technology of titanium alloy processing, The Minerals, Metals and Materials SocietyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. Behera
    • 1
  • S. Nag
    • 1
  • K. Mahdak
    • 1
  • H. Mohseni
    • 1
  • J. Tiley
    • 2
  • R. Banerjee
    • 1
  1. 1.Center for Advanced Research and Technology, Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  2. 2.Materials and Manufacturing DirectorateAir Force Research LaboratoryDaytonUSA

Personalised recommendations