Advertisement

Journal of Materials Science

, Volume 48, Issue 18, pp 6386–6392 | Cite as

Nitrogen doping of ZnTe for the preparation of ZnTe/ZnO light-emitting diode

  • A. E. Rakhshani
  • S. Thomas
Article

Abstract

Nitrogen-doped p-type zinc telluride (p-ZnTe) films are prepared by sputtering in a mixture of nitrogen/argon plasma. The effect of doping level N (ratio of N2 flow rate to that for the mixed gas) in the range 0–10 % on the films properties is investigated. Heterojunction diodes are prepared on stainless steel flexible substrate from the p-ZnTe (doping level, N = 5 %) and solution-grown n-ZnO films. The junction parameters and light-emission properties of diodes are investigated. Doping level beyond N = 1 %, changes the cubic crystal structure of ZnTe to hexagonal and reduces the size of crystallites. At the doping level N = 2–4 %, films with the highest hole density of 2.5 × 1018 cm−3 and lowest band gap energy of 1.4 eV are obtained. The diodes junction built-in potential and the donor density in n-ZnO films are found to be in the range 0.4–0.7 V and 1.5 × 1017–1.4 × 1018 cm−3, respectively. Diodes exhibit electroluminescence in the UV and visible regions due to the band edge and defect emissions in ZnO.

Keywords

Doping Level ZnTe Hole Density Dope Film Stainless Steel Foil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank the support of Kuwait University under the Research Project SP03/09 and the Science General Facility projects.

References

  1. 1.
    Lynch CT (1990) Practical Handbook of Material Science. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Klingshin CF (1995) Semiconductor Optics. Springer, BerlinGoogle Scholar
  3. 3.
    Milnes Feucht AG (1972) Heterojunctions and Metal-Semiconductor Junctions. Academic Press, LondonGoogle Scholar
  4. 4.
    Berger LI (1997) Semiconductor Materials. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Erlacher A, Ambrico M, Perna G, Schiavulli L, Ligonzo T, Jaeger H, Ullrich B (2005) Appl Surf Sci 248:402CrossRefGoogle Scholar
  6. 6.
    Seyam MAM (2012) J Alloy Compd 541:448CrossRefGoogle Scholar
  7. 7.
    Huo HB, Dai L, Liu C, You LP, Yang WQ, Ma RM, Ran GZ, Qin GG (2006) Nanotechnol 17:5912CrossRefGoogle Scholar
  8. 8.
    Aqili AKSA, Saleh AJ, Ali Z, Al-Omari S (2012) J Alloy Compd 520:83CrossRefGoogle Scholar
  9. 9.
    Nishio M, Kai K, Saito K, Tanaka T, Guo Q (2011) Thin Solid Films 520:743CrossRefGoogle Scholar
  10. 10.
    Barati A, Klein A, Jaegermann W (2009) Thin Solid Films 517:2149CrossRefGoogle Scholar
  11. 11.
    Ferreira SO, Sitter H, Faschinger W, Brunthaler G (1994) J Cryst Growth 140:282CrossRefGoogle Scholar
  12. 12.
    Grun M, Haury A, Cibert J, Wasiela A (1996) J Appl Phys 79:7386CrossRefGoogle Scholar
  13. 13.
    Chang JH, Takai T, Koo BH, Song JS, Handa T, Yao T (2001) Appl Phys Lett 79:785CrossRefGoogle Scholar
  14. 14.
    Tanaka T, Nishio M, Guo Q, Ogawa H (2009) J Mater Sci Mater Electron 20:S505CrossRefGoogle Scholar
  15. 15.
    Feng X, Singh K, Bhavanam S, Palekis V, Morel DL, Ferekides C (2013) Thin Solid Films 535:202Google Scholar
  16. 16.
    Gessert TA, Burst JM, Wei SH, Ma J, Kuciauskas D, Rance WL, Barnes TM, Duenow JN, Reese MO, Li JV, Young MR, Dippo P (2013) Thin Solid Films 535:237Google Scholar
  17. 17.
    Tanaka T, Yu KM, Stone PR, Beeman JW, Dubon OD, Reichertz LA, Kao VM, Nishio M, Walukiewicz W (2010) J Appl Phys 108:024502CrossRefGoogle Scholar
  18. 18.
    Wang W, Lin AS, Phillips JD, Metzger WK (2009) Appl Phys Lett 95:261107CrossRefGoogle Scholar
  19. 19.
    Wang W, Lin AS, Phillips JD (2009) Appl Phys Lett 95:0111103CrossRefGoogle Scholar
  20. 20.
    Guo Q, Kume Y, Fukuhara Y, Tanaka T, Nishio M, Ogawa H, Hiratsuka M, Tani M, Hangyo M (2007) Solid State Commun 141:188CrossRefGoogle Scholar
  21. 21.
    Bellakhder H, Outzourhit A, Ameziane EL (2001) Thin Solid Films 382:30CrossRefGoogle Scholar
  22. 22.
    Zhang Z, Li J, Zhang H, Pan X, Xie E (2013) J Alloy Compd 549:88CrossRefGoogle Scholar
  23. 23.
    Wanga BB, Zhu MK, Hu N, Li LJ (2011) J Lumin 131:2550CrossRefGoogle Scholar
  24. 24.
    Bouroushian M, Kosanovic T, Karoussos D, Spyrellis N (2009) Electrochim Acta 54:2522CrossRefGoogle Scholar
  25. 25.
    Kale SS, Mane RS, Pathan HM, Shaikh AV, Joo OS, Han SH (2007) Appl Surf Sci 253:4335CrossRefGoogle Scholar
  26. 26.
    Murali KR, Ziaudeen M, Jayaprakash N (2006) Solid State Electron 50:1692CrossRefGoogle Scholar
  27. 27.
    Rakhshani AE, Kokaj J, Mathew J, Peradeep B (2007) Appl Phys A 86:377CrossRefGoogle Scholar
  28. 28.
    Zhang JP, Zhang LD, Zhu LQ, Zhang Y, Liu M, Wang XJ (2007) J Appl Phys 102:114903CrossRefGoogle Scholar
  29. 29.
    Watanabe F, Shirai H, Fujii Y, Hanajiri T (2011) Thin Solid Films 520:3729CrossRefGoogle Scholar
  30. 30.
    Rakhshani AE (2008) J Phys D 41:015305CrossRefGoogle Scholar
  31. 31.
    Wang W, Phillips JD, Kim SJ, Pan X (2011) J Electron Mater 40:1674CrossRefGoogle Scholar
  32. 32.
    Wang W, Lin A, Phillips JD (2008) J Electron Mater 37:1044CrossRefGoogle Scholar
  33. 33.
    Lee SH, Zhang XG, Smith B, Seo SSA, Bell ZW, Xu J (2010) Appl Phys Lett 96:193116CrossRefGoogle Scholar
  34. 34.
    Neamen DA (2003) Semiconductor Physics and Devices: Basic Principles. McGraw Hill, New YorkGoogle Scholar
  35. 35.
    Janotti A, Vandle Walle CG (2009) Rep Prog Phys 72:126501CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceKuwait UniversitySafatKuwait

Personalised recommendations