Skip to main content
Log in

Synthesis by spark plasma sintering of a novel protonic/electronic conductor composite: BaCe0.2Zr0.7Y0.1O3−δ /Sr0.95Ti0.9Nb0.1O3−δ (BCZY27/STN95)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel two-phase ceramic composite (cercer) material consisting of a solid solution of barium cerate and -zirconate doped with yttrium (BaCe0.2Zr0.7Y0.1O3−δ : BCZY27), together with niobium-doped strontium titanate (Sr0.95Ti0.9Nb0.1O3−δ : STN95), has been synthesized by solid-state reaction and sintered conventionally (CS) at 1350–1500 °C, as well as by spark plasma sintering (SPS) at 1300–1350 °C. CS samples were porous and exhibited high degrees of inter-phase reaction. Nickel oxide sintering aids did not improve CS sample density. In contrast, samples made by SPS were significantly denser (>95 %) and showed less reaction between phases. A pseudo-optimum SPS profile was developed, accounting for the effects of thermal expansion mismatch between BCZY27 and STN95. X-ray diffraction indicated secondary phases exist, but there was no indication of their presence at grain boundaries based on thorough study of these regions with high-resolution transmission electron microscopy and selective area electron diffraction. We thus suggest that these phases are present as independent grains in the bulk. It is believed these secondary phases inhibit electronic conductivity in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Norby T (2001) Nature 410(6831):877

    Article  CAS  Google Scholar 

  2. Fontaine ML, Norby T, Larring Y, Grande T, Bredesen R (2008) In: Reyes M, Miguel M (eds) Membrane science and technology, vol 13. Elsevier, Amsterdam, p 401. doi:10.1016/s0927-5193(07)13010-2

    Google Scholar 

  3. Norby T (1999) Solid State Ion 125(1–4):1. doi:10.1016/s0167-2738(99)00152-6

    Article  CAS  Google Scholar 

  4. Qi X, Lin YS (2000) Solid State Ion 130(1–2):149. doi:10.1016/s0167-2738(00)00281-2

    Article  CAS  Google Scholar 

  5. Song SJ, Wachsman ED, Rhodes J, Dorris SE, Balachandran U (2004) Solid State Ion 167(1–2):99. doi:10.1016/j.ssi.2003.12.010

    Article  CAS  Google Scholar 

  6. Anselmi-Tamburini U, Buscaglia MT, Viviani M, Bassoli M, Bottino C, Buscaglia V, Nanni P, Munir ZA (2006) J Eur Ceram Soc 26(12):2313. doi:10.1016/j.jeurceramsoc.2005.04.022

    Article  CAS  Google Scholar 

  7. Unemoto A, Kaimai A, Sato K, Yashiro K, Matsumoto H, Mizusaki J, Amezawa K, Kawada T (2008) Solid State Ion 178(31–32):1663

    Article  CAS  Google Scholar 

  8. Bentzer HK, Bonanos N, Phair JW (2010) Solid State Ion 181(3–4):249. doi:10.1016/j.ssi.2009.11.002

    Article  CAS  Google Scholar 

  9. Liu Y, Yang L, Liu M, Tang Z, Liu M (2011) J Power Source 196(23):9980. doi:10.1016/j.jpowsour.2011.08.047

    Article  CAS  Google Scholar 

  10. Moos R, Härdtl KH (1997) J Am Ceram Soc 80(10):2549. doi:10.1111/j.1151-2916.1997.tb03157.x

    Article  CAS  Google Scholar 

  11. Steinsvik S, Bugge R, Gjønnes J, Taftø J, Norby T (1997) J Phys Chem Solids 58(6):969. doi:10.1016/s0022-3697(96)00200-4

    Article  CAS  Google Scholar 

  12. Haile SM, Staneff G, Ryu KH (2001) J Mater Sci 36(5):1149. doi:10.1023/a:1004877708871

    Article  CAS  Google Scholar 

  13. Tao S, Irvine JT (2004) Chem Rec 4(2):83. doi:10.1002/tcr.20003

    Article  CAS  Google Scholar 

  14. Hashimoto S, Kindermann L, Poulsen FW, Mogensen M (2005) J Alloys Compd 397(1–2):245. doi:10.1016/j.jallcom.2004.11.066

    Article  CAS  Google Scholar 

  15. Kolodiazhnyi T, Petric A (2005) J Electroceram 15(1):5. doi:10.1007/s10832-005-0375-7

    Article  CAS  Google Scholar 

  16. Pine TS, Lu X, Do A-TV, Mumm DR, Brouwer J (2007) Electrochem Solid-State Lett 10(10):B183

    Article  CAS  Google Scholar 

  17. Zhao H, Gao F, Li X, Zhang C, Zhao Y (2009) Solid State Ion 180(2–3):193. doi:10.1016/j.ssi.2008.11.018

    Article  CAS  Google Scholar 

  18. Iwahara H, Esaka T, Uchida H, Maeda N (1981) Solid State Ion 3–4:359. doi:10.1016/0167-2738(81)90113-2

    Article  Google Scholar 

  19. Iwahara H, Uchida H, Yamasaki I (1987) Int J Hydrog Energy 12(2):73. doi:10.1016/0360-3199(87)90082-6

    Article  CAS  Google Scholar 

  20. Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Solid State Ion 61(1–3):65. doi:10.1016/0167-2738(93)90335-z

    Article  CAS  Google Scholar 

  21. Kreuer KD (1999) Solid State Ion 125(1–4):285. doi:10.1016/s0167-2738(99)00188-5

    Article  CAS  Google Scholar 

  22. Kreuer KD (2003) Annu Rev Mater Res 33(1):333. doi:10.1146/annurev.matsci.33.022802.091825

    Article  CAS  Google Scholar 

  23. Norby T, Larring Y (1997) Curr Opin Solid State Mater Sci 2(5):593. doi:10.1016/s1359-0286(97)80051-4

    Article  CAS  Google Scholar 

  24. Widerøe M, Münch W, Larring Y, Norby T (2002) Solid State Ion 154–155:669. doi:10.1016/s0167-2738(02)00702-6

    Article  Google Scholar 

  25. Norby T (2009) Mater Res Bull 34:923

    Article  CAS  Google Scholar 

  26. Norby T (2009) In: Ishihara T (ed) Fuel cells and hydrogen energy. Springer US, New York, p 217. doi:10.1007/978-0-387-77708-5_11

    Google Scholar 

  27. von Grotthuss CJD (1806) Ann Chim 58:54

    Google Scholar 

  28. Kreuer K-D (1996) Chem Mater 8(3):610. doi:10.1021/cm950192a

    Article  CAS  Google Scholar 

  29. Norby T, Larring Y (2000) Solid State Ion 136–137:139. doi:10.1016/s0167-2738(00)00300-3

    Article  Google Scholar 

  30. Blennow P, Hagen A, Hansen KK, Wallenberg LR, Mogensen M (2008) Solid State Ion 179(35–36):2047. doi:10.1016/j.ssi.2008.06.023

    Article  CAS  Google Scholar 

  31. Blennow P, Hansen KK, Wallenberg LR, Mogensen M (2009) Solid State Ion 180(1):63. doi:10.1016/j.ssi.2008.10.011

    Article  CAS  Google Scholar 

  32. Ricote S, Bonanos N, Caboche G (2009) Solid State Ion 180(14–16):990. doi:10.1016/j.ssi.2009.03.016

    Article  CAS  Google Scholar 

  33. Ricote S, Bonanos N, Wang HJ, Boukamp BA (2012) Solid State Ion 213:36. doi:10.1016/j.ssi.2011.02.011

    Article  CAS  Google Scholar 

  34. Katahira K, Kohchi Y, Shimura T, Iwahara H (2000) Solid State Ion 138(1–2):91. doi:10.1016/s0167-2738(00)00777-3

    Article  CAS  Google Scholar 

  35. Fabbri E, D’Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E (2008) Solid State Ion 179(15–16):558. doi:10.1016/j.ssi.2008.04.002

    Article  CAS  Google Scholar 

  36. Ricote S, Bonanos N, Marco de Lucas MC, Caboche G (2009) J Power Sources 193(1):189. doi:10.1016/j.jpowsour.2008.11.080

    Article  CAS  Google Scholar 

  37. Park HJ, Kwak C, Lee KH, Lee SM, Lee ES (2009) J Eur Ceram Soc 29(12):2429. doi:10.1016/j.jeurceramsoc.2009.02.010

    Article  CAS  Google Scholar 

  38. Coors WG (2011) Co-ionic conduction in protonic ceramics of the solid solution, BaCe(x)Zr(yx)Y(1−y)O3−δ . Part 1: Fabrication and microstructure. In: Ceramic Materials/Book 3. Intech, Croatia

  39. Ryu KH, Haile SM (1999) Solid State Ion 125(1–4):355. doi:10.1016/S0167-2738(99)00196-4

    Article  CAS  Google Scholar 

  40. Ito N, Matsumoto H, Kawasaki Y, Okada S, Ishihara T (2008) Solid State Ion 179(9–10):324. doi:10.1016/j.ssi.2008.02.047

    Article  CAS  Google Scholar 

  41. Ricote S, Bonanos N (2010) Solid State Ion 181(15–16):694. doi:10.1016/j.ssi.2010.04.007

    Article  CAS  Google Scholar 

  42. Khor KA, Yu LG, Chan SH, Chen XJ (2003) J Eur Ceram Soc 23(11):1855. doi:10.1016/s0955-2219(02)00421-1

    Article  CAS  Google Scholar 

  43. Xu T, Wang P, Fang P, Kan Y, Chen L, Vleugels J, Van der Biest O, Van Landuyt J (2005) J Eur Ceram Soc 25(15):3437. doi:10.1016/j.jeurceramsoc.2004.09.004

    Article  CAS  Google Scholar 

  44. Cai M, Liu S, Efimov K, Caro J, Feldhoff A, Wang H (2009) J Membr Sci 343(1–2):90. doi:10.1016/j.memsci.2009.07.011

    Article  CAS  Google Scholar 

  45. Wu YJ, Su SH, Cheng JP, Chen XM (2011) J Am Ceram Soc 94(3):663. doi:10.1111/j.1551-2916.2010.04361.x

    Article  CAS  Google Scholar 

  46. Anselmi-Tamburini U, Garay JE, Munir ZA (2006) Scr Mater 54(5):823. doi:10.1016/j.scriptamat.2005.11.015

    Article  CAS  Google Scholar 

  47. Karakuscu A, Cologna M, Yarotski D, Won J, Francis JSC, Raj R, Uberuaga BP (2012) J Am Ceram Soc 95(8):2531

    Article  CAS  Google Scholar 

  48. Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Mater Sci Eng A 394:139

    Article  Google Scholar 

  49. Song X, Liu X, Zhang J (2006) J Am Ceram Soc 89(2):494

    Article  CAS  Google Scholar 

  50. Liu X, Song X, Zhang J, Zhao S (2008) Mater Sci Eng A 488:1

    Article  Google Scholar 

  51. Muñoz S, Anselmi-Tamburini U (2010) J Mater Sci 45(23):6528. doi:10.1007/s10853-010-4742-7

    Article  Google Scholar 

  52. Laugier J, Bochu B (1999) Index of /ccp/web-mirrors/lmgp-laugier-bochu. http://www.ccp14.ac.uk/ccp/web-mirrors/lmgp-laugier-bochu/. Accessed 15 Dec 2012

  53. Ricote S, Caboche G, Estournes C, Bonanos N (2008) J Nanomater. doi:10.1155/2008/354258

    Google Scholar 

Download references

Acknowledgements

The work was supported in part by internal funds from the Technical University of Denmark (DTU) under the Proton Conducting Fuel Cells (PCFC) Project, and by the Renewable Energy Materials Research Science and Engineering Center at the Colorado School of Mines under National Science Foundation Grant No. DMR-0820518. The authors are grateful to Ngo Van Nong at DTU for invaluable discussions on designing and implementing the SPS profiles. The SPS resources and supplies were provided by funds from the OTE-POWER Project through the Danish Council for Strategic Research under Contract No. 10-093971, and from the Novel Thermoelectric Power Generator Project through the Copenhagen CleanTech Cluster. The authors gratefully acknowledge support from the Swedish Energy Agency, Project No. 32939-1. Special thanks are also due to Finn Willy Poulsen at DTU for interpretation of XRD data on the SPS samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Fish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fish, J.S., Ricote, S., Lenrick, F. et al. Synthesis by spark plasma sintering of a novel protonic/electronic conductor composite: BaCe0.2Zr0.7Y0.1O3−δ /Sr0.95Ti0.9Nb0.1O3−δ (BCZY27/STN95). J Mater Sci 48, 6177–6185 (2013). https://doi.org/10.1007/s10853-013-7414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7414-6

Keywords

Navigation