Journal of Materials Science

, Volume 48, Issue 18, pp 6177–6185 | Cite as

Synthesis by spark plasma sintering of a novel protonic/electronic conductor composite: BaCe0.2Zr0.7Y0.1O3−δ /Sr0.95Ti0.9Nb0.1O3−δ (BCZY27/STN95)

  • Jason S. Fish
  • Sandrine Ricote
  • Filip Lenrick
  • L. Reine Wallenberg
  • Tim C. Holgate
  • Ryan O’Hayre
  • Nikolaos Bonanos


A novel two-phase ceramic composite (cercer) material consisting of a solid solution of barium cerate and -zirconate doped with yttrium (BaCe0.2Zr0.7Y0.1O3−δ : BCZY27), together with niobium-doped strontium titanate (Sr0.95Ti0.9Nb0.1O3−δ : STN95), has been synthesized by solid-state reaction and sintered conventionally (CS) at 1350–1500 °C, as well as by spark plasma sintering (SPS) at 1300–1350 °C. CS samples were porous and exhibited high degrees of inter-phase reaction. Nickel oxide sintering aids did not improve CS sample density. In contrast, samples made by SPS were significantly denser (>95 %) and showed less reaction between phases. A pseudo-optimum SPS profile was developed, accounting for the effects of thermal expansion mismatch between BCZY27 and STN95. X-ray diffraction indicated secondary phases exist, but there was no indication of their presence at grain boundaries based on thorough study of these regions with high-resolution transmission electron microscopy and selective area electron diffraction. We thus suggest that these phases are present as independent grains in the bulk. It is believed these secondary phases inhibit electronic conductivity in the composite.


Selective Area Electron Diffraction Spark Plasma Sinter Selective Area Electron Diffraction Pattern Conventional Sinter HAADF Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported in part by internal funds from the Technical University of Denmark (DTU) under the Proton Conducting Fuel Cells (PCFC) Project, and by the Renewable Energy Materials Research Science and Engineering Center at the Colorado School of Mines under National Science Foundation Grant No. DMR-0820518. The authors are grateful to Ngo Van Nong at DTU for invaluable discussions on designing and implementing the SPS profiles. The SPS resources and supplies were provided by funds from the OTE-POWER Project through the Danish Council for Strategic Research under Contract No. 10-093971, and from the Novel Thermoelectric Power Generator Project through the Copenhagen CleanTech Cluster. The authors gratefully acknowledge support from the Swedish Energy Agency, Project No. 32939-1. Special thanks are also due to Finn Willy Poulsen at DTU for interpretation of XRD data on the SPS samples.


  1. 1.
    Norby T (2001) Nature 410(6831):877CrossRefGoogle Scholar
  2. 2.
    Fontaine ML, Norby T, Larring Y, Grande T, Bredesen R (2008) In: Reyes M, Miguel M (eds) Membrane science and technology, vol 13. Elsevier, Amsterdam, p 401. doi: 10.1016/s0927-5193(07)13010-2 Google Scholar
  3. 3.
    Norby T (1999) Solid State Ion 125(1–4):1. doi: 10.1016/s0167-2738(99)00152-6 CrossRefGoogle Scholar
  4. 4.
    Qi X, Lin YS (2000) Solid State Ion 130(1–2):149. doi: 10.1016/s0167-2738(00)00281-2 CrossRefGoogle Scholar
  5. 5.
    Song SJ, Wachsman ED, Rhodes J, Dorris SE, Balachandran U (2004) Solid State Ion 167(1–2):99. doi: 10.1016/j.ssi.2003.12.010 CrossRefGoogle Scholar
  6. 6.
    Anselmi-Tamburini U, Buscaglia MT, Viviani M, Bassoli M, Bottino C, Buscaglia V, Nanni P, Munir ZA (2006) J Eur Ceram Soc 26(12):2313. doi: 10.1016/j.jeurceramsoc.2005.04.022 CrossRefGoogle Scholar
  7. 7.
    Unemoto A, Kaimai A, Sato K, Yashiro K, Matsumoto H, Mizusaki J, Amezawa K, Kawada T (2008) Solid State Ion 178(31–32):1663CrossRefGoogle Scholar
  8. 8.
    Bentzer HK, Bonanos N, Phair JW (2010) Solid State Ion 181(3–4):249. doi: 10.1016/j.ssi.2009.11.002 CrossRefGoogle Scholar
  9. 9.
    Liu Y, Yang L, Liu M, Tang Z, Liu M (2011) J Power Source 196(23):9980. doi: 10.1016/j.jpowsour.2011.08.047 CrossRefGoogle Scholar
  10. 10.
    Moos R, Härdtl KH (1997) J Am Ceram Soc 80(10):2549. doi: 10.1111/j.1151-2916.1997.tb03157.x CrossRefGoogle Scholar
  11. 11.
    Steinsvik S, Bugge R, Gjønnes J, Taftø J, Norby T (1997) J Phys Chem Solids 58(6):969. doi: 10.1016/s0022-3697(96)00200-4 CrossRefGoogle Scholar
  12. 12.
    Haile SM, Staneff G, Ryu KH (2001) J Mater Sci 36(5):1149. doi: 10.1023/a:1004877708871 CrossRefGoogle Scholar
  13. 13.
    Tao S, Irvine JT (2004) Chem Rec 4(2):83. doi: 10.1002/tcr.20003 CrossRefGoogle Scholar
  14. 14.
    Hashimoto S, Kindermann L, Poulsen FW, Mogensen M (2005) J Alloys Compd 397(1–2):245. doi: 10.1016/j.jallcom.2004.11.066 CrossRefGoogle Scholar
  15. 15.
    Kolodiazhnyi T, Petric A (2005) J Electroceram 15(1):5. doi: 10.1007/s10832-005-0375-7 CrossRefGoogle Scholar
  16. 16.
    Pine TS, Lu X, Do A-TV, Mumm DR, Brouwer J (2007) Electrochem Solid-State Lett 10(10):B183CrossRefGoogle Scholar
  17. 17.
    Zhao H, Gao F, Li X, Zhang C, Zhao Y (2009) Solid State Ion 180(2–3):193. doi: 10.1016/j.ssi.2008.11.018 CrossRefGoogle Scholar
  18. 18.
    Iwahara H, Esaka T, Uchida H, Maeda N (1981) Solid State Ion 3–4:359. doi: 10.1016/0167-2738(81)90113-2 CrossRefGoogle Scholar
  19. 19.
    Iwahara H, Uchida H, Yamasaki I (1987) Int J Hydrog Energy 12(2):73. doi: 10.1016/0360-3199(87)90082-6 CrossRefGoogle Scholar
  20. 20.
    Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Solid State Ion 61(1–3):65. doi: 10.1016/0167-2738(93)90335-z CrossRefGoogle Scholar
  21. 21.
    Kreuer KD (1999) Solid State Ion 125(1–4):285. doi: 10.1016/s0167-2738(99)00188-5 CrossRefGoogle Scholar
  22. 22.
    Kreuer KD (2003) Annu Rev Mater Res 33(1):333. doi: 10.1146/annurev.matsci.33.022802.091825 CrossRefGoogle Scholar
  23. 23.
    Norby T, Larring Y (1997) Curr Opin Solid State Mater Sci 2(5):593. doi: 10.1016/s1359-0286(97)80051-4 CrossRefGoogle Scholar
  24. 24.
    Widerøe M, Münch W, Larring Y, Norby T (2002) Solid State Ion 154–155:669. doi: 10.1016/s0167-2738(02)00702-6 CrossRefGoogle Scholar
  25. 25.
    Norby T (2009) Mater Res Bull 34:923CrossRefGoogle Scholar
  26. 26.
    Norby T (2009) In: Ishihara T (ed) Fuel cells and hydrogen energy. Springer US, New York, p 217. doi: 10.1007/978-0-387-77708-5_11 Google Scholar
  27. 27.
    von Grotthuss CJD (1806) Ann Chim 58:54Google Scholar
  28. 28.
    Kreuer K-D (1996) Chem Mater 8(3):610. doi: 10.1021/cm950192a CrossRefGoogle Scholar
  29. 29.
    Norby T, Larring Y (2000) Solid State Ion 136–137:139. doi: 10.1016/s0167-2738(00)00300-3 CrossRefGoogle Scholar
  30. 30.
    Blennow P, Hagen A, Hansen KK, Wallenberg LR, Mogensen M (2008) Solid State Ion 179(35–36):2047. doi: 10.1016/j.ssi.2008.06.023 CrossRefGoogle Scholar
  31. 31.
    Blennow P, Hansen KK, Wallenberg LR, Mogensen M (2009) Solid State Ion 180(1):63. doi: 10.1016/j.ssi.2008.10.011 CrossRefGoogle Scholar
  32. 32.
    Ricote S, Bonanos N, Caboche G (2009) Solid State Ion 180(14–16):990. doi: 10.1016/j.ssi.2009.03.016 CrossRefGoogle Scholar
  33. 33.
    Ricote S, Bonanos N, Wang HJ, Boukamp BA (2012) Solid State Ion 213:36. doi: 10.1016/j.ssi.2011.02.011 CrossRefGoogle Scholar
  34. 34.
    Katahira K, Kohchi Y, Shimura T, Iwahara H (2000) Solid State Ion 138(1–2):91. doi: 10.1016/s0167-2738(00)00777-3 CrossRefGoogle Scholar
  35. 35.
    Fabbri E, D’Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E (2008) Solid State Ion 179(15–16):558. doi: 10.1016/j.ssi.2008.04.002 CrossRefGoogle Scholar
  36. 36.
    Ricote S, Bonanos N, Marco de Lucas MC, Caboche G (2009) J Power Sources 193(1):189. doi: 10.1016/j.jpowsour.2008.11.080 CrossRefGoogle Scholar
  37. 37.
    Park HJ, Kwak C, Lee KH, Lee SM, Lee ES (2009) J Eur Ceram Soc 29(12):2429. doi: 10.1016/j.jeurceramsoc.2009.02.010 CrossRefGoogle Scholar
  38. 38.
    Coors WG (2011) Co-ionic conduction in protonic ceramics of the solid solution, BaCe(x)Zr(yx)Y(1−y)O3−δ. Part 1: Fabrication and microstructure. In: Ceramic Materials/Book 3. Intech, CroatiaGoogle Scholar
  39. 39.
    Ryu KH, Haile SM (1999) Solid State Ion 125(1–4):355. doi: 10.1016/S0167-2738(99)00196-4 CrossRefGoogle Scholar
  40. 40.
    Ito N, Matsumoto H, Kawasaki Y, Okada S, Ishihara T (2008) Solid State Ion 179(9–10):324. doi: 10.1016/j.ssi.2008.02.047 CrossRefGoogle Scholar
  41. 41.
    Ricote S, Bonanos N (2010) Solid State Ion 181(15–16):694. doi: 10.1016/j.ssi.2010.04.007 CrossRefGoogle Scholar
  42. 42.
    Khor KA, Yu LG, Chan SH, Chen XJ (2003) J Eur Ceram Soc 23(11):1855. doi: 10.1016/s0955-2219(02)00421-1 CrossRefGoogle Scholar
  43. 43.
    Xu T, Wang P, Fang P, Kan Y, Chen L, Vleugels J, Van der Biest O, Van Landuyt J (2005) J Eur Ceram Soc 25(15):3437. doi: 10.1016/j.jeurceramsoc.2004.09.004 CrossRefGoogle Scholar
  44. 44.
    Cai M, Liu S, Efimov K, Caro J, Feldhoff A, Wang H (2009) J Membr Sci 343(1–2):90. doi: 10.1016/j.memsci.2009.07.011 CrossRefGoogle Scholar
  45. 45.
    Wu YJ, Su SH, Cheng JP, Chen XM (2011) J Am Ceram Soc 94(3):663. doi: 10.1111/j.1551-2916.2010.04361.x CrossRefGoogle Scholar
  46. 46.
    Anselmi-Tamburini U, Garay JE, Munir ZA (2006) Scr Mater 54(5):823. doi: 10.1016/j.scriptamat.2005.11.015 CrossRefGoogle Scholar
  47. 47.
    Karakuscu A, Cologna M, Yarotski D, Won J, Francis JSC, Raj R, Uberuaga BP (2012) J Am Ceram Soc 95(8):2531CrossRefGoogle Scholar
  48. 48.
    Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Mater Sci Eng A 394:139CrossRefGoogle Scholar
  49. 49.
    Song X, Liu X, Zhang J (2006) J Am Ceram Soc 89(2):494CrossRefGoogle Scholar
  50. 50.
    Liu X, Song X, Zhang J, Zhao S (2008) Mater Sci Eng A 488:1CrossRefGoogle Scholar
  51. 51.
    Muñoz S, Anselmi-Tamburini U (2010) J Mater Sci 45(23):6528. doi: 10.1007/s10853-010-4742-7 CrossRefGoogle Scholar
  52. 52.
    Laugier J, Bochu B (1999) Index of /ccp/web-mirrors/lmgp-laugier-bochu. Accessed 15 Dec 2012
  53. 53.
    Ricote S, Caboche G, Estournes C, Bonanos N (2008) J Nanomater. doi: 10.1155/2008/354258 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jason S. Fish
    • 1
    • 2
  • Sandrine Ricote
    • 3
  • Filip Lenrick
    • 4
  • L. Reine Wallenberg
    • 4
  • Tim C. Holgate
    • 1
  • Ryan O’Hayre
    • 2
  • Nikolaos Bonanos
    • 1
  1. 1.Department of Energy Conversion and StorageTechnical University of DenmarkRoskildeDenmark
  2. 2.Department of Metallurgical and Materials Engineering, Renewable Energy Materials Research Science and Engineering CenterColorado School of MinesGoldenUSA
  3. 3.Mechanical Engineering Department, Colorado Fuel Cell CenterColorado School of MinesGoldenUSA
  4. 4.nCHREM/Center for Analysis and SynthesisLund UniversityLundSweden

Personalised recommendations