Journal of Materials Science

, Volume 48, Issue 15, pp 5324–5333 | Cite as

Fatigue crack propagation and in-situ observations in three tool steel alloys manufactured using a rapid solidification technique

  • M. Rüssel
  • T. Mottitschka
  • S. Martin
  • L. Krüger
  • W. Kreuzer


By utilizing special manufacturing conditions, e.g., using only pure elements and applying a rapid cooling rate, tool materials with high quasi-static fracture toughness can be produced. However, tool materials are often subjected to cyclic loading and, hence, their lifetime is dominated by fatigue failure. This study is focused on fracture mechanics and in-situ experiments to characterize the fatigue crack propagation behavior of three newly developed tool steels at a stress ratio R of 0.05. Microstructural examinations revealed that the materials consist of the phases α′-martensite, retained austenite, and complex carbides in different amounts. Results of preliminary tests are presented, in which it was attempted to grow the crack in a plane parallel to the plane of the starter notch. The determined ∆K threshold values ranged between 4 and 5 MPa√m with Paris–Erdogan exponents of 3.3–4.6. In-situ observations were performed to understand the inherent damage mechanisms and microstructural effects during fatigue loading. These observations showed that fatigue crack growth is mainly dominated by the ductility of the martensitic–austenitic matrix. Only in cases in which the primary carbides are oriented favorably (with respect to the direction of crack propagation) does the crack follow the coherent carbide network to a certain extent. Furthermore, for the first time, a phase transformation from retained austenite to α′-martensite was detected at the crack tip during fatigue crack propagation for the material group of tool steels.


Fatigue Crack Crack Growth Rate Fatigue Crack Growth Stress Ratio Fatigue Crack Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Grateful acknowledgement is made to Mr. Prof. G. Pusch, Mr. C. Segel, Ms. N. Grundmann and Mr. G. Schreiber for support in carrying out experiments and for helpful discussions. The authors are also thankful to Ms. Dr. U. Kühn and Ms. J. Hufenbach from the Leibniz Institute for Solid State and Materials Research Dresden for providing the test material. The authors are very grateful to Mr. A. McDonnell for proofreading.


  1. 1.
    Rescalvo JA, Averbach B (1979) Metall Mater Trans A 10:1265CrossRefGoogle Scholar
  2. 2.
    Lou B, Averbach BL (1983) Metall Trans A 14:1889CrossRefGoogle Scholar
  3. 3.
    Berns H, Lueg J, Trojahn W, Wähling R, Wisell H (1987) Powder Metall Int 19(4):22Google Scholar
  4. 4.
    Iqbal A, King JE (1990) Int J Fatigue 12(4):234CrossRefGoogle Scholar
  5. 5.
    Torres Y, Rodríguez S, Mateo A, Anglada L, Llanes L (2004) Mater Sci Eng A 387–389:501Google Scholar
  6. 6.
    Jesner G, Pippan R (2009) Metall Mater Trans A 40:810CrossRefGoogle Scholar
  7. 7.
    Brandrup-Wognsen H, Engström J, Grinder O (1988) Powder Metall Int 20(1):18Google Scholar
  8. 8.
    Meurling F, Melander A, Tidesten M, Westin L (2001) Int J Fatigue 23:215CrossRefGoogle Scholar
  9. 9.
    Picas I, Cuadrado N, Casellas D, Goez A, Llanes L (2010) Procedia Eng 2:1777CrossRefGoogle Scholar
  10. 10.
    Hufenbach J, Giebeler L, Hoffmann M, Kohlar S, Kühn U, Gemming T, Oswald S, Eigenmann B, Eckert J (2012) Acta Mater 60:4468CrossRefGoogle Scholar
  11. 11.
    Rüssel M, Martin S, Krüger L, Kreuzer W (2012) Metall Mater Trans A 43:3642CrossRefGoogle Scholar
  12. 12.
    Rüssel M, Martin S, Krüger L, Kreuzer W (2012) J Mater Sci 47:6915. doi: 10.1007/s10853-012-6637-2 CrossRefGoogle Scholar
  13. 13.
    ASTM E647 (2008) Standard test method for measurement of fatigue crack growth rates. American Society for Testing & Materials, West ConshohockenGoogle Scholar
  14. 14.
    ISO 12108 (2002) Metallic materials—fatigue testing—fatigue crack growth method. British Standards Institution, LondonGoogle Scholar
  15. 15.
    Zerbst U, Hübner P (2004) Bruchmechanische Bewertung von Fehlern in Schweißverbindungen, DVS Merkblatt 2401. Dvs-Verlag, DusseldorfGoogle Scholar
  16. 16.
    Döker H (1997) Int J Fatigue 19(1):145CrossRefGoogle Scholar
  17. 17.
    Lange G (2001) Systematische Beurteilung technischer Schadensfälle. Wiley–VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  18. 18.
    Gurland J (1972) Acta Metall 20(5):735CrossRefGoogle Scholar
  19. 19.
    Weber K (2004) Beanspruchungsgerechte Gefügeanalyse und zerstörungsfreie Prüfung von Chromgusseisen. Dissertation, Otto-von-Guericke Universität MagdeburgGoogle Scholar
  20. 20.
    Suresh S (1983) Metall Trans A 14:2375CrossRefGoogle Scholar
  21. 21.
    Porter DL, Evans AG, Heuer AH (1979) Acta Metall 27:1649CrossRefGoogle Scholar
  22. 22.
    Evans AG (1990) J Am Ceram Soc 73(2):187CrossRefGoogle Scholar
  23. 23.
    Hornbogen E (1978) Acta Metall 26:147CrossRefGoogle Scholar
  24. 24.
    Hübner P, Schlosser H, Pusch G, Biermann H (2007) Int J Fatigue 29:1788CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Rüssel
    • 1
  • T. Mottitschka
    • 1
  • S. Martin
    • 2
  • L. Krüger
    • 1
  • W. Kreuzer
    • 3
  1. 1.Faculty of Material Science and Technology, Institute of Materials EngineeringTU Bergakademie FreibergFreibergGermany
  2. 2.Faculty of Material Science and Technology, Institute of Materials ScienceTU Bergakademie FreibergFreibergGermany
  3. 3.Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWeB)ErdingGermany

Personalised recommendations