Advertisement

Journal of Materials Science

, Volume 48, Issue 13, pp 4806–4812 | Cite as

Service properties of ultrafine-grained Ti–6Al–4V alloy at elevated temperature

  • I. P. Semenova
  • G. I. Raab
  • E. R. Golubovskiy
  • R. R. Valiev
Nanostructured Materials

Abstract

This study deals with investigation of mechanical properties and fatigue behavior of the ultra-fine grained (UFG) alloy Ti–6Al–4V at elevated temperatures. UFG samples were produced by means of combination of equal-channel angular pressing and thermomechanical treatments. Studies of the temperature dependence of mechanical properties of the UFG alloy demonstrated their thermal stability upto 175–350 °C. It was revealed that 100-hour creep rupture strength at 300 °C increased from 750 MPa in the conventional state to 890 MPa in the UFG state. The alloy demonstrates stability of the UFG structure at 300 and 370 °C in the conditions of long-term tests. The fatigue tests were conducted with axial loading applied on a sample at 175 °C, the asymmetry factor of the cycle was 0.1. The fatigue endurance limit of the UFG alloy was almost 50 % higher than that of the CG alloy.

Keywords

Fatigue Severe Plastic Deformation Coarse Grained Creep Rupture Strength Coarse Grained Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The study has been conducted under the support of Federal Target Program within the state contract No 14.740.11.0134.

References

  1. 1.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33CrossRefGoogle Scholar
  2. 2.
    Valiev R, Langdon T (2010) Adv Eng Mater 12(8):677CrossRefGoogle Scholar
  3. 3.
    Zherebtsov SV, Salishchev GA, Galeyev RM (2002) Defect Diffus Forum 208–209:237CrossRefGoogle Scholar
  4. 4.
    Stolyarov VV, Shestakova LO, Zharikov AI, Latysh VV, Valiev RZ, Zhu YT, Lowe TC (2001). In: Proceedings of 9th International Conference on Titanium-99, Nauka. 2001, vol 1, p 466Google Scholar
  5. 5.
    Kim SM, Kim J, Shin DH, Ko YG, Lee CS, Semiatin SL (2004) Scripta Mater 50:927CrossRefGoogle Scholar
  6. 6.
    Semenova IP, Yakushina EB, Nurgaleeva VV, Valiev RZ (2009) Int Jt Mater Res (formerly Z Metallk) 100(12):1691CrossRefGoogle Scholar
  7. 7.
    Saitova LR, Hoeppel HW, Goeken M, Semenova IP, Valiev RZ (2009) Int J Fatigue 31:322CrossRefGoogle Scholar
  8. 8.
    Boyer R, Welsch G, Collings E (1998) Materials properties handbook: titanium alloys. ASM International, OhioGoogle Scholar
  9. 9.
    Rack HJ, Qazi J, Allard L, Valiev R (2008) Mater Sci Forum 584–586:893CrossRefGoogle Scholar
  10. 10.
    Zherebtsov S, Kostjuchenko S, Kudryavtsev E, Malysheva S, Murzinova M, Salishchev G (2012) Mater Sci Forum 706–709:1859CrossRefGoogle Scholar
  11. 11.
    Kolobov Yu, Grabovetskaya GN, Ivanov KV, Valiev RZ, Zhu Y.T (2004). In: Zhu YT, Langdon TG, Semiatin SL, Shin DH, Lowe TC (eds) Proceedings of ultrafine grained materials III, 2004, p 621Google Scholar
  12. 12.
    Method of thermomechanical treatment of two-phase titanium alloys. Patent RF No 2,285,740 RU C1, C22F 1/18, 20 Oct 2006Google Scholar
  13. 13.
    ASTM E8-01 Standard test methods for tension testing of metallic materialsGoogle Scholar
  14. 14.
    ASTM E139-11 Standard test methods for conducting creep, creep-rupture, and stress-rupture tests of metallic materialsGoogle Scholar
  15. 15.
    ASTM E468-11 Standard practice for presentation of constant amplitude fatigue test results for metallic materialsGoogle Scholar
  16. 16.
    GOST 25.502-79. Standard mechanical test methods. Fatigue tests methods. M. 34C (in Russian)Google Scholar
  17. 17.
    Semenova IP, Saitova LR, Islamgaliev RK, Dotsenko TV, Kilmametov AR, Demakov SL, Valiev RZ (2005) Phys Metallogr 100(1):77Google Scholar
  18. 18.
    Valiev R, Islamgaliev R, Semenova I, Yunusova N (2007) Mater Sci Eng A 463:2CrossRefGoogle Scholar
  19. 19.
    Lütjering G (1998) Mater Sci Eng A 243:32CrossRefGoogle Scholar
  20. 20.
    Blum W, Eisenlohr P, Sklenička V (2009) Creep behavior of bulk nanostructured materials—time-dependent deformation and deformation kinetics. In: Zehetbauer MJ, Zhu T (eds) Bulk nanostructured materials. Wiley-VCH, WeinheimGoogle Scholar
  21. 21.
    Mishra RS, Stolyarov VV, Echer C, Valiev RZ, Mukherjee AK (2001) Mater Sci Eng A 298:44CrossRefGoogle Scholar
  22. 22.
    Salishchev GA, Galeyev RM, Valiakhmetov OR, Safiulin RV, Lutfullin RY, Senkov ON, Froes FH, Kaibyshev OA (2001) J Mater Process Technol 116:265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • I. P. Semenova
    • 1
  • G. I. Raab
    • 1
  • E. R. Golubovskiy
    • 2
  • R. R. Valiev
    • 1
  1. 1.Institute of Physics of Advanced MaterialsUfa State Aviation Technical UniversityUfaRussia
  2. 2.Central Institute of Aviation Motor Development named P. I. BaranovMoscowRussia

Personalised recommendations