Journal of Materials Science

, Volume 48, Issue 13, pp 4501–4509 | Cite as

Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC

  • M. Yu. Murashkin
  • I. Sabirov
  • V. U. Kazykhanov
  • E. V. Bobruk
  • A. A. Dubravina
  • R. Z. Valiev
Nanostructured Materials


The objective of this work is to study the effect of grain refinement using equal channel angular pressing with parallel channels (ECAP-PC) on microstructure, mechanical properties, and electrical conductivity of an Al–Mg–Si alloy. The coarse grained (CG) material is subjected to ECAP-PC processing at 100 °C for 1, 2, and 6 passes. Mechanical behavior of the Al–Mg–Si alloy after ECAP-PC processing and its electrical conductivity are analyzed with respect to the microstructure developed during ECAP-PC processing. The effect of artificial aging (AA) on the microstructure, mechanical properties, and electrical conductivity of the ECAP-PC processed Al–Mg–Si alloy is investigated. It is shown that the microstructure developed during ECAP-PC processing affects the kinetics of the aging process that, in turn, affects the mechanical properties and electrical conductivity of the material. It is demonstrated that both mechanical properties and electrical conductivity of the Al–Mg–Si alloy can be simultaneously enhanced via intelligent microstructural design through optimization of the thermo-mechanical processing applied to this material.


Severe Plastic Deformation Solute Atom Artificially Aged Severe Plastic Deformation Processing ECAP Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge gratefully the Russian Ministry for Education and Science for financial support of this study through the Federal Targeted Program (Contract No. 14.B37.21.1953 by 14 November 2012). IS acknowledges gratefully Spanish Ministry of Economy and Competitiveness for financial funding through the Ramon y Cajal Fellowship. EVB acknowledges gratefully the RFBR for financial funding (Contract No. 12-02-31766).


  1. 1.
    Sabirov I, Murashkin M, Valiev RZ (2013) Mater Sci Eng A 560:1CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  3. 3.
    Kawasaki M, Langdon TG (2007) J Mater Sci 42:1782. doi: 10.1007/s10853-006-0954-2 CrossRefGoogle Scholar
  4. 4.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  5. 5.
    Liddicoat PV, Liao XZ, Zhao YH, Zhu YT, Murashkin MY, Lavernia EJ, Valiev RZ, Ringer SP (2010) Nat Commun 1:63CrossRefGoogle Scholar
  6. 6.
    Valiev RZ, Enikeev NA, Murashkin MYu, Kazykhanov VU, Sauvage X (2010) Scr Mater 63:949CrossRefGoogle Scholar
  7. 7.
    Bobruk EV, Murashkin MYu, Kazykhanov VU, Valiev RZ (2012) Rev Adv Mater Sci 31:14Google Scholar
  8. 8.
    Ralston KD, Birbilis N, Davies CHJ (2010) Scr Mater 63:1201CrossRefGoogle Scholar
  9. 9.
    Wang CT, Gao N, Wood RJK, Langdon TG (2011) J Mater Sci 46:123. doi: 10.1007/s10853-010-4862-0 CrossRefGoogle Scholar
  10. 10.
    Valiev RZ, Enikeev NA, Langdon TG (2011) Kovove Mater 49:1Google Scholar
  11. 11.
    Sauvage X, Ganeev A, Ivanisenko Y, Enikeev N, Murashkin M, Valiev R (2012) Adv Eng Mater 14:968CrossRefGoogle Scholar
  12. 12.
    Kim WJ, Kim JK, Park TY, Hong SI, Kim DI, Kim YS, Lee JD (2002) Metall Mater Trans A 33:3155CrossRefGoogle Scholar
  13. 13.
    Mckenzie PWJ, Lapovok R (2010) Acta Mater 58:3198CrossRefGoogle Scholar
  14. 14.
    Mckenzie PWJ, Lapovok R (2010) Acta Mater 58:3212CrossRefGoogle Scholar
  15. 15.
    Rezaei MR, Toroghinejad MR, Ashrafizadeh F (2011) J Mater Proc Technol 211:1184CrossRefGoogle Scholar
  16. 16.
    Nurislamova G, Sauvage X, Murashkin M, Islamgaliev R, Valiev R (2008) Philos Mag Lett 88:459CrossRefGoogle Scholar
  17. 17.
    Moreno-Valle EC, Sabirov I, Perez-Prado MT, Murashkin MY, Bobruk EV, Valiev RZ (2011) Mater Lett 65:2917CrossRefGoogle Scholar
  18. 18.
    Sabirov I, Estrin Y, Barnett MR, Timokhina I, Hodgson PD (2008) Scr Mater 58:163CrossRefGoogle Scholar
  19. 19.
    Roven HJ, Nesboe H, Werenskiold JC, Seibert T (2005) Mater Sci Eng A 410–411:426Google Scholar
  20. 20.
    Valiev RZ, Sabirov I, Zhilyaev AP, Langdon TG (2012) JOM 64:1134CrossRefGoogle Scholar
  21. 21.
    Valiev RZ, Langdon TG (2011) Metall Mater Trans A 42:2942CrossRefGoogle Scholar
  22. 22.
    Ferrasse S, Segal VM, Alford F, Kardokus J, Strothers S (2008) Mater Sci Eng, A 493:130CrossRefGoogle Scholar
  23. 23.
    Polmear I (2006) Light alloys: from traditional alloys to nanocrystals. Elsevier, OxfordGoogle Scholar
  24. 24.
    Murashkin MYu, Bobruk EV, Kil’mametov AR, Valiev RZ (2009) Phys Metal Metallogr 108:415CrossRefGoogle Scholar
  25. 25.
    Valiev RZ, Murashkin MYu, Bobruk EV, Raab GI (2009) Mater Trans 50:87CrossRefGoogle Scholar
  26. 26.
    Raab GI (2005) Mater Sci Eng A 410–411:230Google Scholar
  27. 27.
    Rosochowski A, Olejnik L (2002) J Mater Proc Technol 125–126:309CrossRefGoogle Scholar
  28. 28.
    Martin JL, Lo Piccolo B, Kruml T, Bonneville J (2002) Mater Sci Eng A 322:118CrossRefGoogle Scholar
  29. 29.
    Young RA (1993) Rietveld method. International Union of Crystallography. Oxford University Press, New York, 299 pGoogle Scholar
  30. 30.
    Pecharsky VK, Zavalij PY (2003) Fundamentals of powder diffraction and structural characterization of materials. Kluwer Academic Publishers, New YorkGoogle Scholar
  31. 31.
    Sauvage X, Murashkin MYu, Valiev RZ (2010) Kovove Mater 48:1Google Scholar
  32. 32.
    Roven HJ, Liu M, Werenskiold JC (2008) Mater Sci Eng A 483–484:54Google Scholar
  33. 33.
    Vissers R, Van Huis MA, Jansen J, Zandbergen HW, Marioara CD, Andersen SJ (2007) Acta Mater 55:3815CrossRefGoogle Scholar
  34. 34.
    Murayama M, Hono K, Saga M, Kikuchi M (1998) Mater Sci Eng A 250:127CrossRefGoogle Scholar
  35. 35.
    Murayama M, Hono K (1999) Acta Mater 47:1537CrossRefGoogle Scholar
  36. 36.
    Edwards GA, Stiller K, Dunlop GL, Couper M (1998) Acta Mater 46:3893CrossRefGoogle Scholar
  37. 37.
    Matsuda K, Naoi T, Fujii K, Uetani Y, Sato T, Kamio A, Ikeno S (1999) Mater Sci Eng A 262:232CrossRefGoogle Scholar
  38. 38.
    Kashyap BP, Hodgson PD, Estrin Y, Timokhina I, Barnett MR, Sabirov I (2009) Metall Mater Trans A 40:3294CrossRefGoogle Scholar
  39. 39.
    Boehner A, Maier V, Durst K, Hoeppel HW, Goeken M (2011) Adv Eng Mater 13:251CrossRefGoogle Scholar
  40. 40.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317CrossRefGoogle Scholar
  41. 41.
    Oh-ishi K, Horita Z, Furukawa M, Nemoto M, Langdon TG (1998) Metall Mater Trans A 29:2011CrossRefGoogle Scholar
  42. 42.
    Garcia-Infanta JM, Swaminathan S, Cepeda-Jimenez CM, McNelley TR, Ruano OA, Carreno F (2009) J Alloys Compd 478:139CrossRefGoogle Scholar
  43. 43.
    Murayama M, Horita Z, Hono K (2001) Acta Mater 49:21CrossRefGoogle Scholar
  44. 44.
    Gutierrez-Urrutia I, Munoz-Morris MA, Morris DG (2006) J Mater Res 21:329CrossRefGoogle Scholar
  45. 45.
    Gubicza J, Schiller I, Chinh NQ, Illy J, Horita Z, Langdon TG (2007) Mater Sci Eng A 460–461:77Google Scholar
  46. 46.
    Genevois C, Fabregue D, Deschamps A, Poole WJ (2006) Mater Sci Eng A 441:39CrossRefGoogle Scholar
  47. 47.
    De PS, Su JQ, Mishra RS (2011) Scr Mater 64:57CrossRefGoogle Scholar
  48. 48.
    Takata N, Lee SH, Tsuji N (2009) Mater Lett 63:1757CrossRefGoogle Scholar
  49. 49.
    Zhang Y, Li YS, Tao NR, Lu K (2007) Appl Phys Lett 91:211901CrossRefGoogle Scholar
  50. 50.
    Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Science 304:422CrossRefGoogle Scholar
  51. 51.
    Salazar-Guapuriche MA, Zhao YY, Pitman A, Greene A (2006) Mater Sci Forum 519–521:858Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Yu. Murashkin
    • 1
  • I. Sabirov
    • 2
  • V. U. Kazykhanov
    • 1
  • E. V. Bobruk
    • 1
  • A. A. Dubravina
    • 3
  • R. Z. Valiev
    • 1
    • 4
  1. 1.Institute of Physics of Advanced MaterialsUfa State Aviation Technical UniversityUfaRussia
  2. 2.IMDEA Materials InstituteGetafeSpain
  3. 3.Institute of Machine Science named after A.A. BlagonravovRussian Academy of ScienceMoscowRussia
  4. 4.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations