Journal of Materials Science

, Volume 48, Issue 13, pp 4626–4636 | Cite as

Adiabatic heating and the saturation of grain refinement during SPD of metals and alloys: experimental assessment and computer modeling

  • A. P. Zhilyaev
  • S. Swaminathan
  • A. I. Pshenichnyuk
  • T. G. Langdon
  • T. R. McNelley
Nanostructured Materials


Severe plastic deformation methods include equal-channel angular pressing/extrusion, high-pressure torsion, and plane strain machining. These methods are extremely effective in producing bulk microstructure refinement and are generally initiated at a low homologous temperature. The resulting deformation-induced microstructures exhibit progressively refined cellular dislocation structures during the initial stages of straining that give way to refined, equiaxed grain structures at larger strains. Often, grain refinement appears to saturate but frequently coarsening is observed at the largest strains after a minimum in grain size is attained during SPD. Here, we summarize results on grain refinement by these processing methods and provide an analysis that incorporates adiabatic heating to explain the progressive refinement to intermediate strains and that may be followed either by an apparent saturation in grain refinement or by grain coarsening at the largest strains. This analysis is consistent with continuous dynamic recrystallization in the absence of the formation and long-range migration of high-angle boundaries.


Flow Stress Shear Strain Severe Plastic Deformation Equivalent Strain Rake Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Partial support for this work was provided by the U.S. Air Force Office of Scientific Research (Contract F1ATA06058G001, 2006-09, B. Conner, Scientific Officer). SS acknowledges support under the U.S. National Research Council Postdoctoral Fellowship Program at the Naval Postgraduate School. TGL and APZ acknowledge support by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.


  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  2. 2.
    Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russ Metal 1:99Google Scholar
  3. 3.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  4. 4.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:4733CrossRefGoogle Scholar
  5. 5.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317CrossRefGoogle Scholar
  6. 6.
    Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) Mater Sci Eng A 391:377CrossRefGoogle Scholar
  7. 7.
    Zhilyaev AP, Swisher DL, Oh-ishi K, Langdon TG, McNelley TR (2006) Mater Sci Eng A 429:137CrossRefGoogle Scholar
  8. 8.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  9. 9.
    Bridgman PW (1943) J Appl Phys 14:273CrossRefGoogle Scholar
  10. 10.
    Bridgman PW (1952) Studies in large plastic flow and fracture. McGraw-Hill, New YorkGoogle Scholar
  11. 11.
    Merchant ME (1945) J Appl Phys 16:267CrossRefGoogle Scholar
  12. 12.
    Edalati K, Horita Z (2011) Acta Mater 59:6831CrossRefGoogle Scholar
  13. 13.
    Kim HS (2009) Mater Sci Eng A 503:130CrossRefGoogle Scholar
  14. 14.
    Yamaguchi D, Horita Z, Nemoto M, Langdon TG (1999) Scripta Mater 41:791CrossRefGoogle Scholar
  15. 15.
    Zhilyaev AP, García-Infanta JM, Carreño F, Langdon TG, Ruano OA (2007) Scripta Mater 57:763CrossRefGoogle Scholar
  16. 16.
    Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Mater Trans 49:7CrossRefGoogle Scholar
  17. 17.
    Shaw MC (1984) Metal cutting principles. Oxford University Press, ClarendonGoogle Scholar
  18. 18.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143CrossRefGoogle Scholar
  19. 19.
    Polakowski NH, Ripling EJ (1966) Strength and structure of engineering materials. Prentice-Hall, Englewood CliffsGoogle Scholar
  20. 20.
    Onaka S (2010) Phil Mag Let 90:633CrossRefGoogle Scholar
  21. 21.
    Brown TL, Swaminathan S, Chandrasekar S, Compton WD, King AH, Trumble KP (2002) J Mater Res 17:2484CrossRefGoogle Scholar
  22. 22.
    Swaminathan S, Shankar WD, Lee L, Hwang J, King AH, Kezar RF, Rao BC, Brown TL, Chandrasekar S, Compton WD, Trumble KP (2005) Mater Sci Eng A 410–411:358Google Scholar
  23. 23.
    Swaminathan S, Brown TL, Chandrasekar S, McNelley TR, Compton WD (2007) Scripta Mater 56:1047CrossRefGoogle Scholar
  24. 24.
    Terhune SD, Swisher DL, Oh-ishi K, Horita Z, Langdon TG, McNelley TR (2002) Metall Trans A 33:2173CrossRefGoogle Scholar
  25. 25.
    Oh-ishi K, Zhilyaev AP, McNelley TR (2005) Mater Sci Eng A 410–411:183Google Scholar
  26. 26.
    Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A 410–411:277Google Scholar
  27. 27.
    Zhilyaev AP, Swaminathan S, Raab GI, McNelley TR (2006) Scripta Mater 55:931CrossRefGoogle Scholar
  28. 28.
    Zhilyaev AP, McNelley TR, Langdon TG (2007) J Mater Sci 42:1517. doi: 10.1007/s10853-008-2624-z CrossRefGoogle Scholar
  29. 29.
    Zhilyaev AP, Swaminathan S, Gimazov AA, McNelley TR, Langdon TG (2008) J Mater Sci 43:7451. doi: 10.1007/s10853-012-6429-8 CrossRefGoogle Scholar
  30. 30.
    Korznikova EA, Mironov SY, Korznikov AV, Zhilyaev AP, Langdon TG (2012) Mater Sci Eng A 556:437CrossRefGoogle Scholar
  31. 31.
    Sherby OD, Burke PM (1967) Prog Mater Sci 13:325Google Scholar
  32. 32.
    Sherby OD, Wadsworth J (1984) Deformation processing and microstructure. ASM International, Materials ParkGoogle Scholar
  33. 33.
    Vorhauer A, Pippan R (2008) Metall Mater Trans A 39:417CrossRefGoogle Scholar
  34. 34.
    Pippan R, Scheriau S, Taylor A, Hafok M, Hohenwarter A, Bachmaier A (2010) Annu Rev Mater Res 40:319CrossRefGoogle Scholar
  35. 35.
    Hall EO (1951) Proc Phys Soc B 64:742CrossRefGoogle Scholar
  36. 36.
    Petch NJ (1953) J Iron Steel Inst 174:25Google Scholar
  37. 37.
    Nieh TG, Wadsworth J (1991) Scripta Metall Mater 25:955CrossRefGoogle Scholar
  38. 38.
    Eckert J, Holzer J, Krill C, Johnson W (1992) J Mater Res 7:1751CrossRefGoogle Scholar
  39. 39.
    Greer JR, Dongchan J, Gu XW (2012) J Metals 64:1241Google Scholar
  40. 40.
    Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, OxfordGoogle Scholar
  41. 41.
    Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scripta Mater 44:2753CrossRefGoogle Scholar
  42. 42.
    Zhilyaev AP, Nurislamova GV, Kim B-K, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753CrossRefGoogle Scholar
  43. 43.
    Zhilyaev AP, Kim B-K, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scripta Mater 46:575CrossRefGoogle Scholar
  44. 44.
    Zhilyaev AP, Gimazov AA, Soshnikova EP, Révész A, Langdon TG (2008) Mater Sci Eng A 489:207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2013

Authors and Affiliations

  • A. P. Zhilyaev
    • 1
    • 2
  • S. Swaminathan
    • 3
  • A. I. Pshenichnyuk
    • 2
  • T. G. Langdon
    • 1
    • 4
  • T. R. McNelley
    • 5
  1. 1.Materials Research GroupFaculty of Engineering and the Environment, University of SouthamptonSouthamptonUK
  2. 2.Institute for Metals Superplasticity Problems, Russian Academy of ScienceUfaRussia
  3. 3.John F Welch Technology Center, GE Global ResearchBangaloreIndia
  4. 4.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  5. 5.Department of Mechanical and Aerospace EngineeringNaval Postgraduate SchoolMontereyUSA

Personalised recommendations