Advertisement

Journal of Materials Science

, Volume 48, Issue 12, pp 4345–4355 | Cite as

Lengthening kinetics of ferrite plates in high-strength low-carbon low alloy steel

  • X. L. Wan
  • R. Wei
  • L. Cheng
  • M. Enomoto
  • Y. Adachi
Article

Abstract

The lengthening of ferrite plates in a high-strength low carbon low alloy steel, which contained 1.62 mass% Mn and small amounts of Si, Mo, Ni, Cr, and Nb, was observed in situ under high-temperature confocal laser scanning microscopy. Applying the analysis by Speich and Cohen to the growth of a lath-type plate, it was found that the measured lengthening rates are likely to fall between those calculated assuming para- and NPLE modes from the semiempirical equation proposed by Hillert, while they scattered widely presumably because the plate morphology was not a lenticular disk. In the temperature range of measurement, solute drag due to alloying element segregation at the boundary between plate tip and the matrix may not operate to an appreciable extent. The retardation of lengthening from that calculated under paraequilibrium could occur by intrinsic friction of α/γ boundary.

Keywords

Ferrite Austenite High Carbon Steel Solute Drag Ferrite Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are thankful to Prof. K.M. Wu, the International Research Institute for Steel Technology, Wuhan University of Science and Technology, for granting permission in respect of Mr. X.L Wan’s stay at Ibaraki University as an exchange student and for the provision of specimen steel.

References

  1. 1.
    Hillert M (2006) In: Agren J, Brechet Y, Hutchinson C, Philibert J, Purdy G (eds) Thermodynamics and phase transformations: the selected works of Mats Hillert. EDP Sciences, Les Ulis Cedex, pp 113–158Google Scholar
  2. 2.
    Speich GR, Cohen M (1960) Trans TMS-AIME 218:1050Google Scholar
  3. 3.
    Kaufman L, Radcliffe SV, Cohen M (1962) In: Zackay VF, Aaronson HI (eds) Decomposition of austenite by diffusional processes. Wiley, New York, pp 313–352Google Scholar
  4. 4.
    Townsend RD, Kirkaldy JS (1968) Trans ASM 61:605Google Scholar
  5. 5.
    Simonen EP, Aaronson HI, Trivedi R (1973) Metall Trans 4:1239CrossRefGoogle Scholar
  6. 6.
    Hillert M (1975) Metall Trans A 6A:5Google Scholar
  7. 7.
    Hillert M (1994) Metall Mater Trans A 25A:1957CrossRefGoogle Scholar
  8. 8.
    Speich GR (1962) In: Zackay VF, Aaronson HI (eds) Decomposition of austenite by diffusional processes. Wiley, New York, pp 353–367Google Scholar
  9. 9.
    Rao MM, Winchell PG (1967) Trans TMS-AIME 239:956Google Scholar
  10. 10.
    Yada H, Ooka T (1967) Bull Japan Inst Metals 31:766 (ibid., pp. 771–776)Google Scholar
  11. 11.
    Nemoto M (1974) In: Swann PR, Humphrey CJ, Goringe MJ (eds) High voltage electron microscopy. Academic press, London, pp 230–234Google Scholar
  12. 12.
    Hawkins MJ, Barford J (1972) JISI 210:97Google Scholar
  13. 13.
    Tsuya K (1955) J Mech Lab 9:186Google Scholar
  14. 14.
    Goodenow RH, Matas SJ, Hehemann RF (1963) Trans TMS-AIME 227:651Google Scholar
  15. 15.
    Phelan D, Dippenaar R (2004) Metall Mater Trans A 35A:3701CrossRefGoogle Scholar
  16. 16.
    Wu KM, Inagawa Y, Enomoto M (2004) Mater Character 52:121CrossRefGoogle Scholar
  17. 17.
    Wei R, Kanno K, Enomoto M (2011) Metall Mater Trans A 42A:2189CrossRefGoogle Scholar
  18. 18.
    Ågren J (1986) Scr Metall 20:1507CrossRefGoogle Scholar
  19. 19.
    Trivedi R, Pound GM (1967) J Appl Phys 38:3569CrossRefGoogle Scholar
  20. 20.
    Trivedi R (1970) Metall Trans 1:921Google Scholar
  21. 21.
    Hillert M, Sundman B (1976) Acta Metall 24:731CrossRefGoogle Scholar
  22. 22.
    Guo H, Enomoto M (2007) Metall Mater Trans A 38A:1152CrossRefGoogle Scholar
  23. 23.
    Zhang GH, Wei R, Enomoto M, Suh DW (2012) Metall Mater Trans A 43A:833CrossRefGoogle Scholar
  24. 24.
    Guo H, Purdy GR, Enomoto M, Aaronson HI (2006) Metall Mater Trans A 37A:1721CrossRefGoogle Scholar
  25. 25.
    Enomoto M, White CL, Aaronson HI (1988) Metall Trans A 19A:1807Google Scholar
  26. 26.
    Enomoto M, Nojiri N, Sato Y (1994) Mater Trans JIM 35:859Google Scholar
  27. 27.
    Hutchinson CR, Fuchsmann A, Brechet Y (2004) Metall Mater Trans A 35A:1211CrossRefGoogle Scholar
  28. 28.
    Hillert M, Höglund L (2006) Scr Mater 54:1259CrossRefGoogle Scholar
  29. 29.
    Krielaart GP, Van der Zwaag S (1998) Mater Sci Technol 14:10CrossRefGoogle Scholar
  30. 30.
    Wits JJ, Kop TA, Van Leeuwen Y, Sietsma J, Van der Zwaag S (2000) Mater Sci Eng A 283:234CrossRefGoogle Scholar
  31. 31.
    Enomoto M (2002) Metall Mater Trans A 32A:2309CrossRefGoogle Scholar
  32. 32.
    Sietsma J, Van der Zwaag S (2004) Acta Mater 52:4143CrossRefGoogle Scholar
  33. 33.
    Aaronson HI, Boswell PG, Kinsman KR (1986) In: Antolovich SD, Ritchie RO, Gerberich WW (eds) Mechanical properties and phase transformations in engineering materials. TMS-AIME, Warrendale, pp 467–473Google Scholar
  34. 34.
    Aaronson HI (1962) In: Zackay VF, Aaronson HI (eds) Decomposition of austenite by diffusional processes. Interscience, New York, pp 387–546Google Scholar
  35. 35.
    Vooijs SI, Van Leeuwen Y, Sietsma J, Van der Zwaag S (2000) Metall Mater Trans A 31A:379CrossRefGoogle Scholar
  36. 36.
    Chen H, Appolaire B, van der Zwaag S (2011) Acta Mater 59:6751CrossRefGoogle Scholar
  37. 37.
    Chen H, Goune M, Van der Zwaag S (2012) Comput Mater Sci 55:34CrossRefGoogle Scholar
  38. 38.
    Cahn JW (1962) Acta Metall 10:789CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • X. L. Wan
    • 1
  • R. Wei
    • 1
  • L. Cheng
    • 2
  • M. Enomoto
    • 2
  • Y. Adachi
    • 3
  1. 1.International Research Institute for Steel TechnologyWuhan University of Science and TechnologyWuhanChina
  2. 2.Department of Materials Science and EngineeringIbaraki UniversityHitachiJapan
  3. 3.Department of Mechanical Engineering, Graduate School of Science and EngineeringKagoshima UniversityKagoshimaJapan

Personalised recommendations