Journal of Materials Science

, Volume 48, Issue 12, pp 4183–4190 | Cite as

Annealing behaviour of a nanostructured Cu–45 at.%Ni alloy

  • H. Tian
  • H. L. Suo
  • O. V. Mishin
  • Y. B. Zhang
  • D. Juul Jensen
  • J.-C. Grivel


The microstructure and crystallographic texture have been investigated in a Cu–45 at.%Ni alloy after heavy rolling and subsequent annealing at different temperatures. Cold-rolling to a von Mises strain of 5.7 produced a sample with an average boundary spacing along the normal direction of ~70 nm and a large fraction of high-angle boundaries (HABs), ~70 %. Annealing of this sample for 1 h at temperatures ≤450 °C causes structural coarsening, during which the fraction of HABs decreases. Annealing at higher temperatures results in pronounced discontinuous recrystallization accompanied by twinning. Large frequencies of twin boundaries contribute to high HAB fractions measured in the as-recrystallized condition. Cube-oriented grains demonstrate a size advantage compared to grains of other orientations, thus creating a strong cube texture in the recrystallized material. Further annealing of the recrystallized microstructure promotes grain growth, which leads to a significant strengthening of the cube texture and to a dramatic loss of HABs. After 1 h of annealing at 1000 °C the fraction of the cube texture reaches 99 % and the HAB fraction is 12 %.


Shear Band Critical Current Density Rolling Plane Cube Texture Strong Cube Texture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the support from the Danish National Research Foundation (Grant No. DNRF86-5) and the National Natural Science Foundation of China (Grant No. 51261130091) to the Danish-Chinese Center for Nanometals, within which part of the present work was performed. H.T. and H.L.S. are also grateful to the National Natural Science Foundation of China (51171002), Beijing Municipal Natural Science Foundation (2132011 and KZ201310005003), the Specialized Research Fund for the Doctoral Program of Higher Education (20121103110012) and the Danish Agency for Science, Technology and Innovation (Grant No. 09-065234) for supporting this research work. Professor A. Godfrey is acknowledged for useful comments on the manuscript.


  1. 1.
    Vadlamani SS, Eickemeyer J, Schultz L, Holzapfel B (2007) J Mater Sci 42:7586–7591CrossRefGoogle Scholar
  2. 2.
    Shi K, Zhou Y, Meng J, Yang J, Hu GY, Gu HW, Yuan GS (2003) Phys C 386:353–357CrossRefGoogle Scholar
  3. 3.
    Soubeyroux JL, Bruzek CE, Girard A, Jorda JL (2005) IEEE Trans Appl Supercond 15:2687–2690CrossRefGoogle Scholar
  4. 4.
    Girard A, Bruzek CE, Jorda JL, Ortega L, Soubeyroux JL (2006) J Phys: Conf Ser 43:341–344CrossRefGoogle Scholar
  5. 5.
    Goyal A, Norton DP, Christen DK, Specht ED, Paranthaman M, Kroeger DM, Budai JD, He Q, List FA, Feenstra R, Kerchner HR, Lee DF, Hatfield E, Martin PM, Mathis J, Park C (1996) Appl Supercond 5:403–427CrossRefGoogle Scholar
  6. 6.
    Goyal A, Paranthaman MP, Schoop U (2004) MRS Bull 29:552–561CrossRefGoogle Scholar
  7. 7.
    Vannozzi A, Thalmaier G, Armenio AA, Augieri A, Galluzzi V, Mancini A, Rufoloni A, Petrisor T, Celentano G (2010) Acta Mater 58:910–918CrossRefGoogle Scholar
  8. 8.
    Tian H, Zhang YB, Mishin OV, Suo HL, Grivel J-C (2012) In: Proceedings of 33rd Risø international symposium on materials science, Roskilde: 349–354Google Scholar
  9. 9.
    Humphreys FJ (2001) J Mater Sci 36:3833–3854CrossRefGoogle Scholar
  10. 10.
    Mishin OV, Huang X (1999) Mater Sci Forum 294–296:401–404CrossRefGoogle Scholar
  11. 11.
    Mishin OV (1998) J Mater Sci 33:5137–5143CrossRefGoogle Scholar
  12. 12.
    Hughes DA, Hansen N (2000) Acta Mater 48:2985–3004CrossRefGoogle Scholar
  13. 13.
    Liu Q, Huang X, Lloyd DJ, Hansen N (2002) Acta Mater 50:3789–3802CrossRefGoogle Scholar
  14. 14.
    Mishin OV, Juul Jensen D, Hansen N (2010) Metall Mater Trans A 41:2936–2948CrossRefGoogle Scholar
  15. 15.
    Yu T, Hansen N, Huang X (2011) Proc R Soc A 467:3039–3065CrossRefGoogle Scholar
  16. 16.
    Zahid GH, Huang Y, Prangnell PB (2009) Acta Mater 57:3509–3521CrossRefGoogle Scholar
  17. 17.
    Quadir MZ, Al-Buhamad O, Bassman L, Ferry M (2007) Acta Mater 55:5438–5448CrossRefGoogle Scholar
  18. 18.
    Gazder AA, Hazra SS, Pereloma EV (2011) Mater Sci Eng, A 530:492–503CrossRefGoogle Scholar
  19. 19.
    Juul Jensen D (1995) Acta Metall Mater 43:4117–4129CrossRefGoogle Scholar
  20. 20.
    Li XL, Liu W, Godfrey A, Juul Jensen D, Liu Q (2007) Acta Mater 55:3531–3540CrossRefGoogle Scholar
  21. 21.
    Mishin OV, Gottstein G (1998) Mater Sci Eng, A 249:71–78CrossRefGoogle Scholar
  22. 22.
    Zhang YB, Godfrey A, Liu W, Liu Q (2010) Mater Sci Technol 26:197–202CrossRefGoogle Scholar
  23. 23.
    Wulff AC, Mishin OV, Grivel J-C (2012) J Alloys Compd 539:161–167CrossRefGoogle Scholar
  24. 24.
    Holm EA, Hassold GN, Miodownik MA (2001) Acta Mater 49:2981–2991CrossRefGoogle Scholar
  25. 25.
    Wulff AC, Mishin OV, Andersen NH, Zhao Y, Grivel J-C (2013) Mater Lett 92:386–388CrossRefGoogle Scholar
  26. 26.
    Cao WQ, Godfrey A, Liu Q (2003) Mater Sci Eng, A 361:9–14CrossRefGoogle Scholar
  27. 27.
    Durrell JH, Rutter NA (2009) Supercond Sci Technol 22:1–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • H. Tian
    • 1
    • 2
  • H. L. Suo
    • 1
  • O. V. Mishin
    • 3
  • Y. B. Zhang
    • 3
  • D. Juul Jensen
    • 3
  • J.-C. Grivel
    • 2
  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina
  2. 2.Department of Energy Conversion and StorageTechnical University of DenmarkRoskildeDenmark
  3. 3.Department of Wind Energy, Danish-Chinese Center for NanometalsTechnical University of DenmarkRoskildeDenmark

Personalised recommendations