Journal of Materials Science

, Volume 48, Issue 11, pp 4109–4116 | Cite as

Responsive surface charge transfer doping effect of reductive bio-molecules (glucose, fucoidan, and heparin) contacting on semiconducting titanium oxide films

  • Guojiang Wan
  • Ping Li
  • Xia Xiang
  • Jianzhang Zhou
  • Nan Huang


Titanium oxide films appear to have extensive potentials in various applications largely because of its unique semiconducting properties. Usually, attentions are paid to characterize or tailor their surface electronic states, depending upon specific working circumstances as well as the requirements by their functional performances. Nevertheless, very rarely concern has been taken to the responsive effect on their electronic surface states when they come into contact with surrounding environments, which actually plays an important or even decisive role in their subsequent functions. For instance, cases like biomedical application could normally render the surface sequentially contacting with varying ambient media. In this study, we implemented initial contacting titanium oxide film with three representative bio-molecules (glucose, fucoidan, and heparin), and investigated the responsive effect of charge transfer doping on its electronic properties and its bio-performance. It was shown that the contacting imposed apparently n-type surface-charge-transfer-doping effect on the titanium oxide films. Their surface resistivity increased; their photo-luminance emissions were obviously quenched; their hydrophilic properties were improved; and denaturalization of fibrinogen on the surface was suppressed. Electrons were assigned to inject into titanium oxide film to produce the n-type doping effect. Our finding suggests that the semiconductor biomaterials surface properties and performances might be largely or even decisively influenced by the initial contacting of ambient conditions.


Contact Angle Surface Resistivity Titanium Oxide Film Space Charge Layer Flat Band Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Natural Science Foundation of China (Nos. 20973134 and 20603027), the Sichuan Youth Science & Technology Foundation (No. 2012JQ0001) for Distinguished Young Scholars, and the Fundamental Research Funds for the Central Universities (No. SWJTU11ZT11).

Supplementary material

10853_2013_7223_MOESM1_ESM.doc (364 kb)
Supplementary material 1 (DOC 364 kb)
10853_2013_7223_MOESM2_ESM.doc (296 kb)
Supplementary material 2 (DOC 295 kb)


  1. 1.
    Diebold U (2003) Surf Sci Rep 48:53CrossRefGoogle Scholar
  2. 2.
    Henderson MA (2011) Surf Sci Rep 66:185CrossRefGoogle Scholar
  3. 3.
    Su X, Wu QL, Zhan X, Wu J, Wei S, Guo Z (2012) J Mater Sci 47:2519. doi: 10.1007/s10853-011-5974-x CrossRefGoogle Scholar
  4. 4.
    Macwan DP, Dave PN, Chaturvedi S (2011) J Mater Sci 46:3669. doi: 10.1007/s10853-011-5378-y CrossRefGoogle Scholar
  5. 5.
    Huang N, Yang P, Leng YX, Chen JY, Sun H, Wang J et al (2003) Biomaterials 24:2177CrossRefGoogle Scholar
  6. 6.
    Lilja M, Genvad A, Åstrand M, Strømme M, Enqvist H (2011) J Mater Sci Mater Med 22:2727CrossRefGoogle Scholar
  7. 7.
    Scharnweber D, Beutner R, Rößler S, Worch H (2002) J Mater Sci Mater Med 13:1215CrossRefGoogle Scholar
  8. 8.
    Bozzini B, Carlino P, D’Urzo L, Pepe V, Mele C, Venturo F (2008) J Mater Sci Mater Med 19:3443CrossRefGoogle Scholar
  9. 9.
    Wren AW, Coughlan A, Smale KE, Misture ST, Mahon BP, Clarkin OM, Towler MR (2012) J Mater Sci Mater Med. doi: 10.1007/s10856-012-4746-8
  10. 10.
    Chu CL, Wang RM, Hu T, Yin LH, Pu YP, Lin PH et al (2009) J Mater Sci Mater Med 20:223CrossRefGoogle Scholar
  11. 11.
    Liu JX, Yang DZ, Shi F, Cai YJ (2003) Thin Solid Films 429:225CrossRefGoogle Scholar
  12. 12.
    Baier RE (2006) J Mater Sci Mater Med 17:1057CrossRefGoogle Scholar
  13. 13.
    Williams DF (2008) Biomaterials 29:2941CrossRefGoogle Scholar
  14. 14.
    Gorbet MB, Sefton MV (2004) Biomaterials 25:5681CrossRefGoogle Scholar
  15. 15.
    Bott W (1998) Curr Sep 17:87Google Scholar
  16. 16.
    Strobel P, Riedel M, Ristein J, Ley L (2004) Nature 430:439CrossRefGoogle Scholar
  17. 17.
    Ristein J (2006) Surf Sci 600:3677CrossRefGoogle Scholar
  18. 18.
    Shim M, Ozel T, Gaur A, Wang C (2006) J Am Chem Soc 128:7522CrossRefGoogle Scholar
  19. 19.
    Kelly PJ, Arnell RD (2000) Vacuum 56:159CrossRefGoogle Scholar
  20. 20.
    Good RJ, Girifalco LA (1960) J Phys Chem 64:561CrossRefGoogle Scholar
  21. 21.
    Wan GJ, Yang P, Fu RKY, Mei YF, Qiu T, Ho JPY, Huang N, Chu PK (2006) Diamond Relat Mater 15:1276CrossRefGoogle Scholar
  22. 22.
    Vuore Electronic PDF-2 Data Base (Sets 1–47) (1997) PCPDFWIN Ver. 1.30, JCPDS-ICDD (JCPDS-International Centre for Diffraction Data), Newtown SquareGoogle Scholar
  23. 23.
    Huang AP, Di ZF, Chu PK (2007) Surf Coat Technol 201:4897CrossRefGoogle Scholar
  24. 24.
    Nagai H, Aoyama S, Hara H, Mochizuki C, Takano I, Honda T, Sato M (2010) J Mater Sci 45:5704. doi: 10.1007/s10853-010-4640-z CrossRefGoogle Scholar
  25. 25.
    David DGF, Guerreiro J, Silva MVS, Castro Meira MV, Bargiela P, Almeida JS, Freitas JA Jr, Silva AF (2012) J Cryst Growth 350:11CrossRefGoogle Scholar
  26. 26.
    Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press, New YorkCrossRefGoogle Scholar
  27. 27.
    Clarke ML, Wang J, Chen Z (2005) J Phys Chem B 109:22027CrossRefGoogle Scholar
  28. 28.
    Gettens RTT, Gilbert JL (2008) J Biomed Mater Res A 85:176Google Scholar
  29. 29.
    Selvakumaran J, Keddie JL, Ewins DJ, Hughes MP (2008) J Mater Sci Mater Med 19:143CrossRefGoogle Scholar
  30. 30.
    Bolz A, Amon M, Ozbek C et al (1996) Tex Heart Inst J 23:162Google Scholar
  31. 31.
    Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surf Sci Rep 62:219CrossRefGoogle Scholar
  32. 32.
    Diebold U (2003) Appl Phys A 76:681CrossRefGoogle Scholar
  33. 33.
    Chen W, Qi D, Gao X, Wee ATS (2009) Prog Surf Sci 84:279CrossRefGoogle Scholar
  34. 34.
    Kono S, Saito T, Kang SH, Jung WY, Kim BY, Kawata H, Goto T, Kakefuda Y, Yeom HW (2010) Surf Sci 604:1148CrossRefGoogle Scholar
  35. 35.
    Bakir M (2012) J Biomater Appl 27:3CrossRefGoogle Scholar
  36. 36.
    Fischer M, Sperling C, Werner C (2010) J Mater Sci Mater Med 21:931CrossRefGoogle Scholar
  37. 37.
    Kavan L (2012) Chem Rec 2:131CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Guojiang Wan
    • 1
    • 4
  • Ping Li
    • 1
  • Xia Xiang
    • 2
  • Jianzhang Zhou
    • 3
  • Nan Huang
    • 1
  1. 1.Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.Institute of Physics and ElectronicsUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.State Key Laboratory of Physical Chemistry of the Solid SurfaceXiamen UniversityXiamenChina
  4. 4.Southwest Jiaotong UniversityChengduChina

Personalised recommendations